65 research outputs found

    CsI(Tl) for WIMP dark matter searches

    Get PDF
    We report a study of CsI(Tl) scintillator to assess its applicability in experiments to search for dark matter particles. Measurements of the mean scintillation pulse shapes due to nuclear and electron recoils have been performed. We find that, as with NaI(Tl), pulse shape analysis can be used to discriminate between electron and nuclear recoils down to 4 keV. However, the discrimination factor is typically (10-15)% better than in NaI(Tl) above 4 keV. The quenching factor for caesium and iodine recoils was measured and found to increase from 11% to ~17% with decreasing recoil energy from 60 to 12 keV. Based on these results, the potential sensitivity of CsI(Tl) to dark matter particles in the form of neutralinos was calculated. We find an improvement over NaI(Tl) for the spin independent WIMP-nucleon interactions up to a factor of 5 assuming comparable electron background levels in the two scintillators.Comment: 16 pages, 8 figures, to be published in Nucl. Instrum. and Meth. in Phys. Res.

    High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism

    Full text link
    Nuclear recoil measurements with high-purity Germanium detectors are very promising to directly detect dark matter candidates. The main background sources in such experiments are natural radioactivity and microphonic noise. Digital pulse shape analysis is an encouraging approach to reduce the background originating from the latter. To study the pulse shapes of nuclear recoil events we performed a neutron scattering experiment, which covered the ionization energy range from 20 to 80 keV. We have measured ionization efficiencies as well and found an excellent agreement with the theory of Lindhard. In a further experiment we measured pulse shapes of a radioactive gamma-source and found no difference to nuclear recoil pulse shapes. Pulse shapes originating from microphonics of a HPGe-detector are presented for the first time. A microphonic noise suppression method, crucial for dark matter direct detection experiments, can therefore be calibrated with pulse shapes from gamma-sources.Comment: 11 pages (latex) including 6 postscript figures and 2 table

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume III: DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Evaluating Quaternary dating methods: radiocarbon, U-series, luminescence, and amino acid racemization dates of a late Pleistocene emu egg

    No full text
    Abstract not availableJohn W. Magee, Gifford H. Miller, Nigel A. Spooner, Danielle G. Questiaux, Malcolm T. McCulloch, Peter A. Clar

    Characteristics of alpha, gamma and nuclear recoil pulses from NaI(Tl) at 10-keV - 100-keV relevant to dark matter searches

    Get PDF
    Measurements of the shapes of scintillation pulses produced by nuclear recoils, alpha particles and photons in NaI(Tl) crystals at visible energies of 10-100 keV have been performed in order to investigate possible sources of background in NaI(Tl) dark matter experiments and, in particular, the possible origin of the anomalous fast time constant events observed in the UK Dark Matter Collaboration experiments at Boulby mine. Pulses initiated by X-rays (via photoelectric effect close to the surface of the crystal) were found not to differ from those produced by high-energy photons (via Compton electrons inside the crystal) within experimental errors. However, pulses induced by alpha particles (degraded from an external MeV source) were found to be ~10% faster than those of nuclear recoils, but insufficiently fast to account for the anomalous events.Comment: 9 pages, 2 figures, corrected misprint
    corecore