126 research outputs found

    Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea : a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids

    Get PDF
    Author Posting. © Blackwell, 2007. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 9 (2007): 1001-1016, doi:10.1111/j.1462-2920.2006.01227.x.Within the upper 400 m at western, central, and eastern stations in the world’s largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alfa-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether (GDGT) of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 μM including layers where previously anammox bacteria were described (Kuypers et al., 2003). Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared to the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 μM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared to the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.This work was supported by a grant from the Netherlands Organization for Scientific Research (VENI Innovational Research Grant nr. 813.13.001 to MJLC), an U. S. National Science Foundation grant OCE0117824 to SGW and the Spinoza award to JSSD, which we greatly acknowledge

    Physical Mapping of Bread Wheat Chromosome 5A: An Integrated Approach

    Get PDF
    The huge size, redundancy, and highly repetitive nature of the bread wheat [Triticum aestivum (L.)] genome, makes it among the most difficult species to be sequenced. To overcome these limitations, a strategy based on the separation of individual chromosomes or chromosome arms and the subsequent production of physical maps was established within the frame of the International Wheat Genome Sequence Consortium (IWGSC). A total of 95,812 bacterial artificial chromosome (BAC) clones of short-arm chromosome 5A (5AS) and long-arm chromosome 5A (5AL) arm-specific BAC libraries were fingerprinted and assembled into contigs by complementary analytical approaches based on the FingerPrinted Contig (FPC) and Linear Topological Contig (LTC) tools. Combined anchoring approaches based on polymerase chain reaction (PCR) marker screening, microarray, and sequence homology searches applied to several genomic tools (i. e., genetic maps, deletion bin map, neighbor maps, BAC end sequences (BESs), genome zipper, and chromosome survey sequences) allowed the development of a high-quality physical map with an anchored physical coverage of 75% for 5AS and 53% for 5AL with high portions (64 and 48%, respectively) of contigs ordered along the chromosome. In the genome of grasses, Brachypodium [Brachypodium distachyon (L.) Beauv.], rice (Oryza sativa L.), and sorghum [Sorghum bicolor (L.) Moench] homologs of genes on wheat chromosome 5A were separated into syntenic blocks on different chromosomes as a result of translocations and inversions during evolution. The physical map presented represents an essential resource for fine genetic mapping and map-based cloning of agronomically relevant traits and a reference for the 5A sequencing projects

    A microscopic approach to the response of 3^{\bf 3}He -4^{\bf 4}He mixtures

    Full text link
    Correlated Basis Function perturbation theory is used to evaluate the zero temperature response S(q,ω)S(q,\omega) of 3^3He-4^4He mixtures for inelastic neutron scattering, at momentum transfers qq ranging from 1.11.1 to 1.7A˚11.7 \AA^{-1}. We adopt a Jastrow correlated ground state and a basis of correlated particle-hole and phonon states. We insert correlated one particle-one hole and one-phonon states to compute the second order response. The decay of the one-phonon states into two-phonon states is accounted for in boson-boson approximation. The full response is splitted into three partial components Sαβ(q,ω)S_{\alpha \beta}(q,\omega), each of them showing a particle-hole bump and a one phonon, delta shaped peak, which stays separated from the multiphonon background. The cross term S34(q,ω)S_{34}(q,\omega) results to be of comparable importance to S33(q,ω)S_{33}(q,\omega) in the particle-hole sector and to S44(q,ω)S_{44}(q,\omega) in the phonon one. Once the one-phonon peak has been convoluted with the experimental broadening, the computed scattering function is in semiquantitative agreement with recent experimental measurements.Comment: 26 pages, RevTex 3.0, 8 figures available upon reques

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres

    Get PDF
    Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community
    corecore