281 research outputs found

    Light-emitting poly(dendrimers)

    Get PDF
    Organic light-emitting diodes (OLEDs) have great potential for displays and lighting applications. For large area displays the ideal materials would be both phosphorescent and solution processible. These requirements mean that the materials need to be able to be patterned and the most advanced method for forming pixelated displays is inkjet printing. Light-emitting phosphorescent dendrimers have given high efficiency monochrome displays with the emitting layer deposited by spin-coating. However, the viscosity of the dendrimer solutions is insufficient for inkjet printing. We report the development of a new class of light-emitting materials, namely poly(dendrimers) in which a green emissive phosphorescent dendrimer is attached to a poly(styrene) backbone. Free radical polymerization of a dendrimer-styrene monomer gave a poly(dendrimer) with a weight average molecular weight of 24000 and a polydispersity of 3.6. A dilute Solution of the dendrimer had a viscosity 15% higher than the neat solvent. Comparison of the photophysical studies of the poly(dendrimer) versus a model monomer dendrimer showed that the PL spectrum was broader and red-shifted, and the PL quantum yield around 50% lower. This was attributed to intermolecular interactions of the emissive dendrimers, which are held closely together oil the polymer backbone

    Influence of enhanced melt supply on upper crustal structure at a mid-ocean ridge discontinuity: A three-dimensional seismic tomographic study of 9°N East Pacific Rise

    Get PDF
    We present a three-dimensional upper crustal model of the 9°03′N overlapping spreading center (OSC) on the East Pacific Rise that assists in understanding the relationship between melt sills and upper crustal structure at a ridge discontinuity with enhanced melt supply at crustal levels. Our P wave velocity model obtained from tomographic inversion of ∼70,000 crustal first arrival travel times suggests that the geometry of extrusive emplacement are significantly different beneath the overlapping spreading limbs. Extrusive volcanic rocks above the western melt sill are inferred to be thin (∼250 m). More extensive accumulation of extrusives is inferred to the west than to the east of the western melt sill. The extrusive layer inferred above the eastern melt sill thickens from ∼350 (at the neovolcanic axis) to 550 m (to the west of the melt sill). Volcanic construction is likely to be significant in the formation of ridge crest morphology at the OSC, particularly at the tip of the eastern limb. On the basis of our interpretation of the velocity model, we propose that enhanced magma supply at crustal levels at the OSC may provide an effective mechanism for the migration of ridge discontinuities. This “dynamic magma supply model” may explain the commonly observed nonsteady migration pattern of ridge discontinuities by attributing this to the temporal fluctuations in melt availability to the overlapping spreading limbs

    Additive Manufactured Biodegradable Poly(glycerol sebacate methacrylate) Nerve Guidance Conduits

    Get PDF
    Entubulating devices to repair peripheral nerve injuries are limited in their effectiveness particularly for critical gap injuries. Current clinically used nerve guidance conduits are often simple tubes, far stiffer than that of the native tissue. This study assesses the use of poly(glycerol sebacate methacrylate) (PGSm), a photocurable formulation of the soft biodegradable material, PGS, for peripheral nerve repair. The material was synthesized, the degradation rate and mechanical properties of material were assessed and nerve guidance conduits were structured via stereolithography. In vitro cell studies confirmed PGSm as a supporting substrate for both neuronal and glial cell growth. Ex vivo studies highlight the ability of the cells from a dissociated dorsal root ganglion to grow out and align along the internal topographical grooves of printed nerve guide conduits. In vivo results in a mouse common fibular nerve injury model show regeneration of axons through the PGSm conduit into the distal stump after 21 days. After conduit repair levels of spinal cord glial activation (an indicator for neuropathic pain development) were equivalent to those seen following graft repair. In conclusion, results indicate that PGSm can be structured via additive manufacturing into functional NGCs. This study opens the route of personalized conduit manufacture for nerve injury repair. STATEMENT OF SIGNIFICANCE: This study describes the use of photocurable of Poly(Glycerol Sebacate) (PGS) for light-based additive manufacturing of Nerve Guidance Conduits (NGCs). PGS is a promising flexible biomaterial for soft tissue engineering, and in particular for nerve repair. Its mechanical properties and degradation rate are within the desirable range for use in neuronal applications. The nerve regeneration supported by the PGS NGCs is similar to an autologous nerve transplant, the current gold standard. A second assessment of regeneration is the activation of glial cells within the spinal cord of the tested animals which reveals no significant increase in neuropathic pain by using the NGCs. This study highlights the successful use of a biodegradable additive manufactured NGC for peripheral nerve repair

    Fault-tolerant grid-based solvers: Combining concepts from sparse grids and MapReduce

    Get PDF
    A key issue confronting petascale and exascale computing is the growth in probability of soft and hard faults with increasing system size. A promising approach to this problem is the use of algorithms that are inherently fault tolerant. We introduce such an algorithm for the solution of partial differential equations, based on the sparse grid approach. Here, the solution of multiple component grids are efficiently combined to achieve a solution on a full grid. The technique also lends itself to a (modified) MapReduce framework on a cluster of processors, with the map stage corresponding to allocating each component grid for solution over a subset of the processors, and the reduce stage corresponding to their combination. We describe how the sparse grid combination method can be modified to robustly solve partial differential equations in the presence of faults. This is based on a modified combination formula that can accommodate the loss of one or two component grids. We also discuss accuracy issues associated with this formula. We give details of a prototype implementation within a MapReduce framework using the dynamic process features and asynchronous message passing facilities of MPI. Results on a two-dimensional advection problem show that the errors after the loss of one or two sub-grids are within a factor of 3 of the sparse grid solution in the presence of no faults. They also indicate that the sparse grid technique with four times the resolution has approximately the same error as a full grid, while requiring (for a sufficiently high resolution) much lower computation and memory requirements. We finally outline a MapReduce variant capable of responding to faults in ways other than re-scheduling of failed tasks. We discuss the likely software requirements for such a flexible MapReduce framework, the requirements it will impose on users’ legacy codes, and the system's runtime behavior.J. W. Larson, M. Hegland, B. Harding, S. Roberts, L. Stals, A. P. Rendell, P. Strazdins, M. M. Ali, C. Kowitz, R. Nobes, J. Southern, N. Wilson, M. Li, Y. Oish

    The Concise Guide to PHARMACOLOGY 2023/24: Ion channels.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Transnational academic mobility and gender

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Globalisation, Societies and Education on 24 June 2011, available online: http://wwww.tandfonline.com/10.1080/14767724.2011.577199This paper examines to what extent the participation of researchers in transnational academic mobility, their experiences and perceived outcomes vary by gender. Based on longitudinal statistics, original survey data and semi-structured interviews with former visiting researchers in Germany, the paper shows that the academic world of female researchers tends to be less international than that of their male colleagues, particularly in the natural sciences. This situation has improved since the 1980s but significant variations remain by source country, subject, career stage and length of stay. The paper argues that the underlying reasons go far beyond direct gender relationships and suggests that conceptualising transnational academic mobility as an integral part of mobilisation processes in Latourian 'centres of calculation' underlines the need for making this experience accessible to the widest possible range of researchers. © 2011 Taylor & Francis

    DEVELOPMENT of the MODEL of GALACTIC INTERSTELLAR EMISSION for STANDARD POINT-SOURCE ANALYSIS of FERMI LARGE AREA TELESCOPE DATA

    Get PDF
    Most of the celestial \u3b3 rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20\ub0 and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within \u2dc4\ub0 of the Galactic Center
    corecore