267 research outputs found

    Occupational Mortality, Age at Marriage and Marital Fertility Early Twentieth Century England and Wales

    Get PDF
    What factors determine fertility and to what extent do we really understand the decision processes that underpinned when to marry, when to start having children and how many children to have in the historical past? In many ways, the posing of such questions may seem surprising given the now copious literature on the subject.1 In this paper we use new datasets built from previously under-exploited primary source materials and improved econometric modelling to build on previous work and thereby improve on our understanding of the determinants of the demand for children in early twentieth century England and Wales

    Sliding blocks with random friction and absorbing random walks

    Full text link
    With the purpose of explaining recent experimental findings, we study the distribution A(λ)A(\lambda) of distances λ\lambda traversed by a block that slides on an inclined plane and stops due to friction. A simple model in which the friction coefficient μ\mu is a random function of position is considered. The problem of finding A(λ)A(\lambda) is equivalent to a First-Passage-Time problem for a one-dimensional random walk with nonzero drift, whose exact solution is well-known. From the exact solution of this problem we conclude that: a) for inclination angles θ\theta less than \theta_c=\tan(\av{\mu}) the average traversed distance \av{\lambda} is finite, and diverges when θθc\theta \to \theta_c^{-} as \av{\lambda} \sim (\theta_c-\theta)^{-1}; b) at the critical angle a power-law distribution of slidings is obtained: A(λ)λ3/2A(\lambda) \sim \lambda^{-3/2}. Our analytical results are confirmed by numerical simulation, and are in partial agreement with the reported experimental results. We discuss the possible reasons for the remaining discrepancies.Comment: 8 pages, 8 figures, submitted to Phys. Rev.

    Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011.

    Get PDF
    Wheat (Triticum aestivum L.) yields in Kansas have increased due to wheat breeding and improved agronomic practices, but are subject to climate and disease challenges. The objective of this research is to quantify the impact of weather, disease, and genetic improvement on wheat yields of varieties grown in 11 locations in Kansas from 1985 to 2011. Wheat variety yield data from Kansas performance tests were matched with comprehensive location-specific disease and weather data, including seasonal precipitation, monthly air temperature, air temperature and solar radiation around anthesis, and vapor pressure deficit (VPD). The results show that wheat breeding programs increased yield by 34 kg ha⁻¹ yr⁻¹. From 1985 through 2011, wheat breeding increased average wheat yields by 917 kg ha⁻¹, or 27% of total yield. Weather was found to have a large impact on wheat yields. Simulations demonstrated that a 1°C increase in projected mean temperature was associated with a decrease in wheat yields of 715 kg ha⁻¹, or 21%. Weather, diseases, and genetics all had significant impacts on wheat yields in 11 locations in Kansas during 1985 to 2011

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore