60 research outputs found

    A scaled fundamental equation for the thermodynamic properties of carbon dioxide in the critical region

    Get PDF
    A scaled fundamental equation is presented for the thermodynamic properties of carbon dioxide in the critical region. The equation is constructed by combining earlier experimental pressure data of Michels and co‐workers with new specific heat data obtained by one of the authors and represents the thermodynamic properties of carbon dioxide in the critical region at temperatures from 301.15 to 323 K and at densities from 290 to 595 kg/m3

    Shape of crossover between mean-field and asymptotic critical behavior in a three-dimensional Ising lattice

    Full text link
    Recent numerical studies of the susceptibility of the three-dimensional Ising model with various interaction ranges have been analyzed with a crossover model based on renormalization-group matching theory. It is shown that the model yields an accurate description of the crossover function for the susceptibility.Comment: 4 pages RevTeX + 3 PostScript figures. Uses epsf.sty and rotate.sty. Final version; accepted for publication in Physics Letters

    Critical Point Field Mixing in an Asymmetric Lattice Gas Model

    Full text link
    The field mixing that manifests broken particle-hole symmetry is studied for a 2-D asymmetric lattice gas model having tunable field mixing properties. Monte Carlo simulations within the grand canonical ensemble are used to obtain the critical density distribution for different degrees of particle-hole asymmetry. Except in the special case when this asymmetry vanishes, the density distributions exhibit an antisymmetric correction to the limiting scale-invariant form. The presence of this correction reflects the mixing of the critical energy density into the ordering operator. Its functional form is found to be in excellent agreement with that predicted by the mixed-field finite-size-scaling theory of Bruce and Wilding. A computational procedure for measuring the significant field mixing parameter is also described, and its accuracy gauged by comparing the results with exact values obtained analytically.Comment: 10 Pages, LaTeX + 8 figures available from author on request, To appear in Z. Phys.

    Critical Viscosity Exponent for Fluids: What Happend to the Higher Loops

    Full text link
    We arrange the loopwise perturbation theory for the critical viscosity exponent xηx_{\eta}, which happens to be very small, as a power series in xηx_{\eta} itself and argue that the effect of loops beyond two is negligible. We claim that the critical viscosity exponent should be very closely approximated by xη=815π2(1+83π2)0.0685x_{\eta}=\frac{8}{15 \pi^2}(1+\frac{8}{3 \pi^2})\simeq 0.0685.Comment: 9 pages and 3 figure

    Microscopic View on Short-Range Wetting at the Free Surface of the Binary Metallic Liquid Gallium-Bismuth: An X-ray Reflectivity and Square Gradient Theory Study

    Get PDF
    We present an x-ray reflectivity study of wetting at the free surface of the binary liquid metal gallium-bismuth (Ga-Bi) in the region where the bulk phase separates into Bi-rich and Ga-rich liquid phases. The measurements reveal the evolution of the microscopic structure of wetting films of the Bi-rich, low-surface-tension phase along different paths in the bulk phase diagram. A balance between the surface potential preferring the Bi-rich phase and the gravitational potential which favors the Ga-rich phase at the surface pins the interface of the two demixed liquid metallic phases close to the free surface. This enables us to resolve it on an Angstrom level and to apply a mean-field, square gradient model extended by thermally activated capillary waves as dominant thermal fluctuations. The sole free parameter of the gradient model, i.e. the so-called influence parameter, κ\kappa, is determined from our measurements. Relying on a calculation of the liquid/liquid interfacial tension that makes it possible to distinguish between intrinsic and capillary wave contributions to the interfacial structure we estimate that fluctuations affect the observed short-range, complete wetting phenomena only marginally. A critical wetting transition that should be sensitive to thermal fluctuations seems to be absent in this binary metallic alloy.Comment: RevTex4, twocolumn, 15 pages, 10 figure

    Thermodynamic Properties of Methanol in the Critical and Supercritical Regions

    Full text link

    Optical Properties of Fluid Mercury in the Liquid-Vapour Critical Region*

    No full text
    corecore