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A scaled fundamental equation is presented for the thermodynamic properties of carbon 
dioxide in the critical region. The equation is constructed by combining earlier experimental 
pressure data of Michels and co-workers with new specific heat data obtained by one of the 
authors and represents the thermodynamic properties of carbon dioxide in the critical region at 
temperatures from 301.15 to 323 K and at densities from 290 to 595 kg/m3. 

I. INTRODUCTION 

The singular asymptotic behavior of the thermodynam
ic properties of fluids near the critical point satisfies scaling 
laws with universal critical exponents and scaling functions. 
Several attempts have been made to formulate representa
tive equations for the thermodynamic properties of carbon 
dioxide in the critical region that incorporate the scaling 
laws. 1-6 However, the previous equations contained effective 
critical exponent values that differed from the universal 
critical exponent values predicted by theory.? This defi
ciency can be repaired by extending the asymptotic equa
tions so as to include at least one correction-to-scaling term 
as predicted by the renormalization-group theory of critical 
phenomena and by incorporating scaling fields that are com
binations of the physical field variables in accordance with 
the revised scaling of the decorated lattice gas.8

-
10 

Our interest in formulating an accurate scaled funda
mental equation for carbon dioxide in the critical region was 
motivated by the fact that new precise experimental data for 
the isochoric specific heat of CO2 have become available as 
measured by one of the authors. 11 These new specific-heat 
data replace the specific-heat data earlier reported by Lipa et 
al. 12 

There exists an increased interest in the thermodynamic 
properties of CO2, in part because of the use of CO2 as a 
solvent for supercritical extraction and in enhanced oil-re
covery programs. To meet the demand for representative 
equations that yield the thermodynamic properties of CO2, 

Ely et al. have recently developed a global fundamental 
equation for CO2 valid in a large range of temperatures and 
densities.13 Like most fundamental equations in the litera
ture, the global equation of Ely et al. remains analytic at the 
critical point and, therefore, fails to accommodate the diver
gent critical behavior of the isochoric specific heat. The re-
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suIts presented in this paper complement the work of Ely et 
al. by providing a fundamental equation which is accurate in 
the close vicinity of the critical point. 

II. REVISED AND EXTENDED LINEAR MODEL 

Fluids near the vapor-liquid critical point are expected 
to belong to the universality class of three-dimensional Ising
like systems. 14,15 The renormalization-group theory of criti
cal phenomena predicts that near the critical point the ther
modynamic potential F of a spin system represented by a 
Landau-Ginzburg-Wilson Hamiltonian can be represented 
by an expansion of the form l6 

F = Fo + 11'1/:1(.5+ 1)/0 C1'~PIl) 

+ ud1'I/:I(.5+ 1) +b.il C1'~PIl) + '" . (2.1) 

Here (3 and {j are the exponents of the critical power laws 
that characterize the asymptotic behavior of the order pa
rameter along the coexistence boundary and of the ordering 
field along the critical isotherm, while the exponent a l ac
counts for the nonanalytic behavior ofthe first correction to 
the asymptotic power-law behavior. The variables l' and h 
are relevant scaling fields that vanish at the critical point, 
and U J is the first irrelevant scaling field that approaches a 
finite value at the critical point. For spin systems, the ther
modynamic potential F can be identified with the Gibbs free 
energy divided by kB T, where kB is Boltzmann's constant 
and T the temperature. The scaling fields 1', h, and U I and the 
background function Fo are assumed to be analytic functions 
of the physical fields, temperature T, and magnetic field H, 
or, equivalently, l/kBT andH /kBT. 

To apply the theory to fluid systems, it is assumed that 
the potential F can be identified with the pressure P and the 
magnetic field H with the chemical potential,." as is the case 
for the analogy between Ising model and lattice gas. 18 Spe
cifically, we consider the potential P /Tas a function of liT 
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and /lIT and write the expansion (2.1) in the form 

P =Po(T,fi) + 11"IP(1i+110C1"~PIi) 

+ U 11"IP(Ii+ I) +.<l,# (_h_) 
I J I 11"IPIi ' (2.2) 

truncating the expansion after the first correction-to-scaling 
term. Here we introduce the reduced quantities 

- P Tc 
P=-

TP' c 

- Tc 
T=--, 

T 

p=P..., U=~, (2.3) 
Pc Pc V 

where P is the density, V the volume, and U the internal 
energy, while Tc' Pc, and Pc are the values of T, P, andp at 
the critical point. In addition, we define the variables 

aT= T+ 1, I:1{.t =fi -fio(T), (2.4) 

chosen such that aT = 0 and I:1{.t = 0 at the critical point. 
The functions fio(T) and Po(T,ji.) are analytic functions 
which we represent by truncated Taylor expansions in pow
ers of aT and of aT and 1:1{.t, respectively: 

4 

fio(T) = fic + L fi; (aT);, (2.5) 
;=1 

_ _ 3 __ . __ 

Po(T,fi) = 1 + L P;(aT)' + I:1{.t + P l1 aTI:1{.t. (2.6) 
;=1 

The scaling fields 1", h, and U I are analytic functions of 
aT and 1:1{.t. To first order 

h = I:1{.t = fi - fio ( T) , (2.7) 

(2.8) 

while UI can be approximated by a constant. In the approxi
mation considered here, h = 0 at coexistence andfio( T) is to 
be interpreted as the saturation chemical potential for 
aT < 0 or its analytic extension for aT> O. The system-de
pendent constant c in Eq. (2.8) accounts for the mixing of 
the aT and I:1{.t variables in the effective scaling field 1" for 
nonsymmetric systems. The potential Psatisfies the differen
tial relation 

dP = UdT + pdfi = (u + p ?;. ) d(aT) + pd(I:1{.t). 

(2.9) 

This relation enables one to obtain expressions for the var
ious thermodynamic properties from the potential P. 

To specify the fundamental equation, we need explicit 
expressions for the scaling functions!o and!1 in Eq. (2.2). In 
practice, empirical closed-form expressions are used that 
conform to the asymptotic behavior and the symmetry of the 
Ising model; they require a transformation to parametric 
variables rand (), where r measures a distance from the criti
cal point and () a location on a contour of constant r. 7,19,20 A 
transformation commonly used is 

h = a'pIi(}(1 _ (}2), (2.1Oa) 

(2.1Ob) 

where a and b are constants. At coexistence h = 0 and the 
values () = ± 1 correspond to the two branches of the coex-

istence curve. The transformation (2.10) implies that the 
singular part M= P - poet it) of the potentialPmust de
pend on rand () in such a way that 

(aM) =,P[mo((})+~'ml((})]' (2.11) 
ah T 

Since!oand!1 in Eq. (2.1) are even in h, and hence even in (), 
it follows that mo((}) and m l ((}) must be odd in (). The sim
plest assumption is to assume that mo((}) and m l ((}) are 
proportional to (): 

mo((}) = ko(}, (2.12) 

(2.13 ) 

The linear approximation (2.12) for mo((}) was originally 
introduced by Schofield et al.21 and defines the so-called lin
ear model. 7 The generalization Eq. (2.13) of the linear-mod
el appoximation to the first correction-to-scaling term was 
introduced by Balfour et al. 8,22 With the equations (2.12) 
and (2.13) for mo((}) and m l ((}) the scaled fundamental 
equation for the potential P becomes 

P= Po(T,ji.) + a,P(Ii+ I) [koPo((}) + kl~'PI((})], 
(2.14 ) 

where poe (}) and PI ((}) are polynomials of the form 

Po((}) =POO+P20(}2+ P40(}4, (2.15) 

(2.16) 

The coefficients Pji are functions of the critical exponents p, 
8, and a l and of the constant b 2 as presented in Table III of 
the Appendix. Equations for various thermodynamic prop
erties derived from this potential are also presented in the 
Appendix. 

For the universal critical exponentsp, 8, and a l we have 
adopted the values 

P=O.325, 8=4.82, a l =O.50 (2.17) 

in good agreement with the theoretical values for these expo
nents.23 The system-dependent constants that determine the 
scales of the fields h, 1", and u l are represented by the coeffi
cients a, ko, and k l . However, universality of the scaling 
functions implies that the constant b 2 be universal. The re
normalization-group theory indicates that the linear-model 
approximation (2.12) for mo((}) is not exact, but only cor
rectuptoorder~, where€ = 4 - dwithd thedimensionali
ty of the system.24-27 However, with the choice 

b 2 = 1.3757 (2.18 ) 

the linear model reproduces the ratios of the asymptotic 
power laws to within the numerical accuracy that these ra
tios are known theoretically.lO The linear model thus yields 

. an adequate approximant for the asymptotic scaling behav
ior of the thermodynamic potential. The universal values 
used here for p, 8, aI' and b 2 are the same as previously 
adopted in the application of the revised and extended linear 
model to light steam, lO heavy steam,28 isobutane,29 and eth
ylene. 30.31 Universality of the scaling function!1 in Eq. (2.1) 
implies universal ratios for the amplitudes in the first correc
tion term to the asymptotic power laws which also have been 
estimated from theory.23.27.32-35 As pointed out elsewhere, 
the extended linear-model appoximation (2.13) for m l ((}) 
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implies ratios for these correction-to-scaling amplitudes that 
differ from the current theoretical predictions.23 Hence, the 
extended linear model, while incorporating the asymptotic 
scaling behavior with considerable accuracy, only yields an 
order of magnitude estimate for the correction-to-scaling 
terms. A more complete treatment of the leading corrections 
to scaling would require the addition of a term of the form 
hi (O),.AI in the expression (2.1Oa) for the scaling field h.36 

III. APPLICATION TO CARBON DIOXIDE 

The scaled fundamental equation as defined in the pre
ceding section contains the following system-dependent pa
rameters: the critical parameters Te , Pc, and Pc, the param
eters a, ko' k l , and c which determine the relationship 
between the scaling fields and the physical variables, the pa
rameters PI' P2, P3, and PI1 which determine the analytic 
background in the pressure and the parameters,ue,,uI,,u2,,u3' 
and ,u4 which determine the analytic background in the 
chemical potential. The values of these parameters obtained 
for CO2 are presented in Table IV of the Appendix. The 
resulting fundamental equation represents the thermody
namic surface of CO2 in the range of temperatures and pres
sures bounded by 

301.15..;T..;323 K, 
(3.1) 

290<p..;595 kglm3. 

To determine the values of the system-dependent pa
rameters we have considered the accurate P-p-T measure
ments of Michels and co-workers37.38 and the new specific
heat data of Edwards.u The P-p-T data are comprised of 
data from two different experiments. In the critical region 
the major part of the pressure data are provided by the mea
surements of Michels et aP8; these data are grouped in iso
therms ranging from 276 to 313 K with densities ranging 
from about 168 to about 913 kglm3 and pressures ranging 
from about 3.8 to about 10 MPa. Within the range specified 
by Eq. (3.1), there are also two isotherms, at 313 and 323 K 
measured by Michels et al. with a different experimental 
technique.37 In the interpretation of P-p-T data of both ex
periments attention must be made to the temperature scale 
as discussed by Levelt Sengers et al.4

•
39 The thermometers of 

Michels et al. were purportedly calibrated by the P. T. R. in 
Berlin; the relationship of this calibration to the current in
ternational practical temperature scale (IPTS 68) is ob
scure. We assumed that the difference between the tempera
tures, T Michels' of Michels et al. and the IPTS 68, T68, can be 
represented by a constant temperature shift in the limited 
temperature range of validity of the scaled equation. We de
termined this temperature shift by requiring that the vapor
pressure measurements of Michels et al. agree with the va
por-pressure measurements obtained by Levelt Sengers and 
Chen39 in 1972. This procedure yielded a shift of 

T68 = T Michels - 0.035 K. (3.2) 

In addition, we determined the temperature shift necessary 
to make the pressures of Michels et al. at the critical isochore 
coincide with the pressure measurements of Levelt Sengers 
and Chen above the critical temperature. Within statistical 

uncertainty the latter procedure yielded the same tempera
ture shift. 

Pressure data alone do not accurately determine the lo
cation of the critical point. 10,40 We therefore first determined 
the critical temperature Tc from an analysis of the Cv data of 
Edwards with the result II 

Tc = 304.107 K. (3.3) 

This value of Tc ' from the Cv and thermal time constant data 
of Edwards, is 0.02 K lower than the value Tc = 304.127 K 
determined by Moldover from a visual observation of the 
temperature of meniscus disappearance.41 We do not know 
which of the two values for Tc is more accurate on an abso
lute basis. A case can be made that the Cv data yield an 
estimate for Tc averaged over a finite albeit small volume, 
while the value reported by Moldover is based on a local 
observation. Generally, the value of Tc is also known to be 
very sensitive to impurities. _ _ _ _ 

The parameters Pc, Pc, a, ko, kl' C, PI' P2, P3, and PI1 

were determined by fitting the equation for the pressure to 
the experimental pressure data of Michels et al. In perform
ing the analysis we assumed (Tp = 0.0001 MPa, (TT = 0.005 
K, (T = 1O-p for the errors in the experimental pressures, 
tem;eratures, and densities, estimated from the description 
of the experimental procedure and the degree of consistency 
between the two sets of data of Michels et al. 37

•
38 The equa

tion for the pressure with 

Pc = 7.3721 MPa, Pc = 467.69 kglm3, (3.4) 

reproduces the experimental pressure data in the range 
specified by Eq. (3.1) with a standard chi square of 1.96. 

In Figures 1 and 2 we represent a comparison between 
the experimental pressure data of Michels and co
workers37.38 and the pressures calculated from the scaled 
fundamental equation presented in this paper. In the same 
figures we have included a comparison with the pressures 
calculated from the analytic equation of Ely et al.13 The dif
ferences A = (Pexp - P calc )IPexp between the pressures cal-
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FIG. 1. Percentage differences between the experimental pressure data of 
Michels et al. and the values calculated from the scaled fundamental equa
tion at room temperatures between 301.167 and 304.435 K. The dashed 
curve corresponds to pressures calculated from the analytic equation of Ely 
etal. 

    p



1720 Albright et al.: Carbon dioxide in the critical region 

+ 0.12 Michels et 01 x 30.4.638 K o 313.20.2 K 
"'313.220 K 
o322.827K 

DENSITY (kg/m3) 

o 

! I 

/ 
I 

/ 

~/ 

/ 
/ 

550. 

/ 

600 

FIG. 2. Percentage differences between the experimental pressure data of 
Michels et al. and the values calculated from the scaled fundamental equa
tion at temperatures between 304.638 and 322.827 K. The dashed curves 
correspond to pressures calculated from the analytic equation of Ely et al. 

culated from our fundamental equation and the experimen
tal pressures of Michels et al. have an average magnitude 
(I ~I > = 0.012% in the range specified by Eq. (3.1). In the 
same range of densities and temperatures the analytic equa
tion of Ely et al. shows deviations with an average magnitude 
(I ~ I> = 0.026%. The global equation of Ely et al. does not 
reproduce the pressures of Michels et al. in the critical region 
within experimental precision. However, the deviations are 
still small if one considers the fact that Ely et al. did not use 
the experimental pressure data of Michels et al. in determin
ing the values of the parameters in their global equation. 

New P-p-T data for CO2 have recently been obtained by 
Haynes.42 Two of the isotherms measured by Haynes in
clude data points inside the range of validity of the scaled 
equation, namely at 310 and at 320 K. A comparison of the 
calculated pressure values with the experimental pressures 
of Haynes is presented in Fig. 3. The deviations of these 
experimental pressures of Haynes from our scaled funda-

+0.12 

+0.10. 
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+0.08 /' ", 
I , 

o 

+0..06 " \ 
~ +0..04 /~ 0 \\0 

o 
~ +0..02 \ x 0 
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J -0..02 
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~ -0.06 

-0..08 

-0..10. 

x 310 K} Haynes 
o 320K 

-0..12 l..L __ --:::-'::-,,-__ --:-:'~--~;::__---;:~--_;:_;':_;::_-~ 
30.0. 350. 400 450. 50.0. 550. 60.0. 

DENSITY (kg/m3) 

FIG. 3. Percentage differences between the experimental pressure data of 
Haynes and the values calculated from the scaled fundamental equation. 
The dashed curve corresponds to pressures calculated from the analytic 
equation of Ely et al. 

mental equation have an average magnitude ( I ~ I > 
= 0.03%, to be compared with the average <I~I> = 0.05% 

for the equation of Ely et al. 
The coefficients f.l2' f.l3' and f.l4 in Eq. (2.5) specify an 

analytic background contribution to the specific heat and 
are, therefore, determined from a fit to the experimental Cv 

data. Edwards has obtained almost 6000 measurements II in 
the critical region at two isochores with p = 467.8 and 
434.39 kg/m3 at temperatures ranging from 287 to 313 K. 
Magee and Ely43 have also recently reported an extensive set 
of Cv data of compressed CO2, The data of Magee and Ely do 
not approach the critical point sufficiently close to specify 
the critical behavior of the specific heat, but they yield de
tailed information on the magnitude of Cv for CO2 outside 
the critical region. The specific-heat data, as originally re
ported by Edwards, do not reduce to the specific-heat data 
found by Magee and Ely outside the critical region. The lat
ter data are consistent with the Cv values earlier reported by 
Michels and de Groot44 and by Michels and Strijland.45 The 
difficulty with the work of Edwards is that the heat capacity 
of the empty calorimeter was never measured. Instead, the 
heat capacity of the empty calorimeter was estimated from 
its known composition. We assumed that the discrepancy 
between the data of. Edwards and the other literature data 
outside the critical region is due to insufficient accuracy in 
the knowledge of the heat capacity of the empty calorimeter. 
We therefore redetermined the heat capacity of the empty 
calorimeter by requiring that the specific heat data of Ed
wards should coincide with those of Magee and Ely outside 
the critical region. Since the Cv data of Edwards and of Ma
gee and Ely were obtained at substantially different densi
ties, this goal cannot be easily accomplished by comparing 
the experimental data directly. Since the equation of Ely was 
developed with the Cv data of Magee and Ely as input, we 
demanded instead that the specific heat calculated from the 
scaled equation agree with the specific heat calculated from 
the analytic equation of Ely at a matchpoint at the boundary 
of the region (3.1) of the validity of the scaled equation. The 
matchpoint chosen for this purpose corresponds to a tem
perature To and a density Po such that 

To = 322.827 K, Po = 404.5 kg/m3, (3.5) 

where both equations yield an identical pressure 
Po = 10.1136 MPa. This procedure implied that a constant 
value of9.64 J/mol K had to be subtracted from the data as 
reported originally by Edwards. 

In determining.u2' .u3' and.u4 from the corrected Cv data 
of Edwards, we used the error estimates 0' T = 0.005 K and 
up = 0.05 kg/m3 for temperature and density; for O'c

u 
we 

used the standard deviations found by Edwards from spline 
fits to the various experimental runs, II except that we adopt
ed a minimum error of 0.25%. With the values thus found 
for .u2' .u3' and .u4' the scaled equation reproduces the experi
mental C data of Edwards with a standard chi square of 3.8. 
The actu~l experimental and calculated Cv data are shown in 
Figs. 4 and 5, while a plot of the deviations between experi
mental and calculated Cv values relative to the estimated 
error is shown in Fig. 6. As can be seen from Fig. 6, the 
deviations are not completely random, although most data 
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FIG. 4. Specific heat C. as a function of temperature atp = 467.59 kglm3
• 

The data points are experimental values of Edwards, the solid curve repre
sents C. values calculated from the scaled fundamental equation, and the 
dashed curve indicates C. values calculated from the analytic equation of 

Elyetal. 

points are within three standard deviations. In particular, we 
think that the systematic trends noticeable at temperatures 
below the critical temperature indicate a limitation of our 
linear model in its capability of fully accounting for correc
tions to scaling and lack of vapor liquid symmetry. While 
our linear model has been demonstrated to reproduce the 
thermodynamic properties of fluids in the supercritical re
gion,23,46 it has always been difficult to cover a significant 
range below the critical temperature. 10,28-3 J 

It is possible to reduce the standard chi square to 1.9 by 
fitting the experimental Cv data to our scaled fundamental 
equation with all parameters left free. However, the resulting 
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E ...... 
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0 
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FIG. 5. Specific heat C. as a function of temperature atp = 434.39 kglm3
• 

The data points are experimental values of Edwards, the solid curve repre
sents C. values calculated from the scaled fundamental equation, and the 
dashed curve indicates C. values calculated from the analytic equation of 
Elyetal. 
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FIG. 6. Deviations of the experimental C. values of Edwards from the C. 
values calculated with our scaled equation relative to the estimated error 0'. 

fundamental equation does not yield a satisfactory represen
tation of the experimental pressure data. The reason is that 
the Cv data of Edwards are limited to two densities close to 
Pc and therefore do not specify the density dependence of the 
thermodynamic properties reliably. The equation, presented 
in this paper, is the best we can obtain if we want to maintain 
consistency between the Cv data and the available pressure 
data. The deviations a = (CV,CllPt - Cv,caIC )/CV,CllPt of the ex
perimental Cv data from those calculated with the scaled 
equation have an average magnitude (Ial > = 1.5%. In Figs. 
4 and 5 we also indicate the Cv values calculated from the 
equation of Ely et al.13 As any analytic equation, the equa
tion of Ely et al. does not reproduce the actual divergent 
behavior of the specific heat near the critical point. Away 
from the critical point, scaled and analytic equations repre
sent the experimental Cv data with comparable qUality. 

As mentioned earlier, the new Cv data of Magee and 
Ely43 were primarily obtained at temperatures and densities 
outside the critical region. A comparison with the few ex
perimental Cv data of Magee and Ely inside the region of 
validity (3.1) of our scaled equation is presented in Fig. 7. 
Our scaled equation and the equation of Ely et al. yield a 
similar representation of these data. 

Finally, the coefficients J.tc and J.tJ determine the zero
point values of enthalpy and entropy. Specifically, the en
thalpy zero fixes J.tJ and the entropy zero fixes J.tc + J.tJ and 
hence J.t c' We determined these parameters by requiring that 
the enthalpy and entropy calculat~d from the scaled equa
tion agree with those ofthe global equation of Ely et al. at the 
matchpoint specified by Eq. (3.5). 

The linear model implies the following asymptotic pow
er laws along the critical isochore P = Pc, the coexistence 
curve p = p cxc and the critical isotherm T = Tc: 

cvlf 2 =A+laTI-a forp=pc' T>Te, 

CJT 2 =A -laTI-a forp =Pc' T<.Te' 

p - 1 = ± B laTI19 forp = Pcxc , T<.Tc' 

i=r+laTI-r forp=Pe' T>Te, 

i = r-laT 1- r for p = Pcxc' T<..Tc' 

¥= ±Dlp-116 forT=Te, 

with 

(3.6a) 

(3.6b) 

(3.7) 

(3.Sa) 

(3.Sb) 

(3.9) 
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---- Scaled equation 

-------- Equation of Ely et al. 
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FIG. 7. Specific heat c. as afunction of temperature at two isochores corre
sponding to p = 369 kg/ml andp = 534 kg/ml. The data points are experi
mental values of Magee and Ely, the solid curves represent C. values calcu
lated from the scaled fundamental equation, and the dashed curves indicate 
C. values calculated from the analytic equation of Ely et al. 

a=2-{3(~+ 1) =0.1085, r={3(~-1) = 1.2415 

(3.10) 
and with 7,47,48 

A + = ako{3(~ + 1)( {3~ + 1-{3)(2 -{3~ -{3)poo 

=3.06, (3.lla) 

A - = A + (Poo + P20 + P40)/Poo(b 2 - 1).8(.5 + 1) = 5.75, 

(3.llb) 

B = kol(b 2 - 1).8 = 1.68, (3.12) 

r+ = kola = 0.052, (3.13a) 

r- = r+(b 2 - l).8.5-.8- 1 [ 1 - b 2(1 - 2,8)]12 = 0.0106, 

(3.13b) 

(3.14) 

ThevaluesB = 1.68 and r+ = 0.052 maybe compared with 
the values B = 1.59 ± 0.03 and r+ = 0,046 ± 0.002 earlier 
determined by Sengers and Moldover from an analysis of 
interferometric compressibility-profile data.49 The differ
ences reflect the limited accuracy with which these critical 
amplitudes can be determined from P-p-T data. The correla
tion length 5 diverges as 

5=50IaTI-V forp=pc, T>Tc, 

with 

v = {3(~ + 1 )/3 = 0.63. 

(3.15 ) 

(3.16) 

Two-scale-factor universality predicts that the correlation
length amplitude 50 is related to the specific heat amplitude 
A + by27,50 

(3.17) 

The validity of two-scale-factor universality for gases near 
the critical point was verified by Sengers and Moldover.49 

SubstitutionofEq. (3.lla) intoEq. (3.17) yields 50 = 0.154 
nm in agreement with the experimental value 50 
= (0.150 ± 0.009) determined by Lunacek and Cannell.51 

IV. DISCUSSION 

The scaled fundamental equation, presented in this pa
per supplements the global analytic fundamental equation of 
Ely et 01.13 for CO2 by providing an accurate representation 
of the thermodynamic properties in the near vicinity of the 
critical point. Specifically, use of a scaled equation is neces
sary to accommodate the experimentally observed divergent 
behavior of the specific heat. 

The disadvantage of the scaled fundamental equation is 
that its validity is restricted to a small range [Eq. (3.1)] 
around the critical point. In fact, the agreement with experi
mental data deteriorates very rapidly as soon as the scaled 
fundamental equation is extrapolated outside this range. 
The problem is that the scaled equation used here does not 
extrapolate properly to any known limit far away from the 
critical point, neither at low or high densities nor at low or 
high temperatures. In formulating the scaled fundamental 
equation the potential is separated into a singular critical 
contribution and an analytic background contribution. Re
normalization-group analysis has demonstrated the exis
tence in the critical region of analytic terms driven by the 
critical fluctuations that vanish in the classical limit as dis
cussed by Nicoll et 01. 17,52-54 Hence, our analytic back
ground is an effective background combining critical and 
classical analytic contributions. Attempts to formulate a 
global fundamental equation that incorporates the crossover 
from singular behavior near the critical point to the proper 
classical behavior far away from the critical point are cur
rently in progress.55 
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APPENDIX: EQUATIONS FOR REVISED AND 
EXTENDED LINEAR MODEL 

The reduced thermodynamic quantities are defined as 
follows: 
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TABLE I. Parametric equations for singular terms. 

- UI - ATe 
U=-- A=--

VP' VTP' c c 

p=P-, 
Pc 

- H Tc 
H--- VT P , 

c 

- S Tc s=-
VP' c 

-_ T(ap ) Pc 
X-p ap ~T' 

T Pc c 

- Cp Tc 
C=--

p V P , 
c 

- Cv Tc 
C--

v - V P , 
c 

(P T )112 _ Wee 
W=-- --- . 

TI/2 Pc 
(Al) 

In the above, T is the temperature, It the chemical potential, 
P the pressure, p the density, V the volume, U the internal 
energy, A the Helmholtz free energy, S the entropy, Cv the 
heat capacity at constant volume, Cp the heat capacity at 
constant pressure, and W the thermodynamic sound velocity. 
The corresponding thermodynamic differential relations are 

I 

TABLE II. Auxiliary functions for parametric equations. 

p,(8) =POI +P2I82+P4184 (i=O,1) 
s,(8) = SOl + S2182 ,s;(8) = 2s21 8 (i = 0,1) 
q(8) = 1 + [b 2 (2,&5 -1) - 318 2 -b 2 (2,&5 _ 3)8 4 

"0(8) = [1- b 2(l- 2P)8 2]1q(8) 
",(8) = [1 - b 2(l - 2P - 2~,)82]1q(8) 
vo(8) = [P(l - 38 2)8 - p.5(l - 8 2)8]1q(8) 
v,(8) = [( P +~,) (l - 38 2 )8 - p.5(l - 8 2)8]1q(8) 
wo(8) = [( p.5 + P - 1) (l - 38 2)so(8) - p.5(l - 8 2 )8 s({.8) ]lq(8) 

w, (8) = [p.5 + P - 1 + ~,) (l - 38 2)s,(8) - p.5(l - 8 2)8s; (8»)1 

q(8) 

ifi = uit + pdji" 

dA = - Vit + ji,dp, 

dB = - TdU + pdji" 

dS = TdU - ji,dp. (A2) 

The fundamental equation for the potential P has the 
form 

3 

P= 1 + L P;(lln; + llji,(l +PI111n + llP, (A3a) 
;=1 

with 

llT= T+ 1, (A3b) 
4 

llji, = ji, - ji,c - L ji,; (lln;. (A3c) 
;=1 

The parametric equations for llji" llT, llP, and the deriva
tives of llPwith respect to llji, and llT are presented in Table 
I in terms of auxiliary functions listed in Table II. From the 
fundamental equation (A3) one can calculate the other 
thermodynamic properties by using the following thermo
dynamic relationships9.10: 

- - - (allP) p = 1 +PI111T+ --_ , 
allji, boT 

(A4) 

TABLE III. Values of universal constants in the revised and extended linear model. 
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TABLE IV. Values of system-dependent constants in the revised and ex
tended linear model for CO2, 

Tc = 304.107 K 
Pc = 467.69 kglm3 

Pc = 7.3721 MPa 

a = 23.364 
ko = 1.2200 
kl = 0.50407 
c = - 0.016207 

PI = + 5.9939 
]>2 = - 27.759 
P3 = + 5.5503 
PII = - 0.13644 

Po = - 28.215 
PI = - 33.213 
P2 = - 17.373 
P3 = - 23.442 
P. = + 118.01 

Critical constants 

Scaling-function constants 

Pressure background constants 

Thermal background constants 

v = PI + 2P2~/t + 3P3(!:/i)2 + P[,ul + 2il2aT 

+ 3,u3(aT)2 + 4fi4(aT)3] + plJa,u + (~~) <1/ 
(A5) 

A =p,u - P, (A6) 

H=P- TV, (A7) 

S=H-p,u= - TV-A, (A8) 

- (a 2M) (A9) 
x= aa,u2 <11" 

(~:)'t = :' CAlO) 

(~~\ = PI + 2P2aT + 3P3(aT)2 + PII [ a,u - :] 

+ (aM) p a2M (All) 
aaT <1{1. - i aaTal:l,ii , 

Cv - - - - - 2 =- = 2P2 + 6P3aT - P[2,u2 + 6,u3aT + 12,u4(aT) ] T2 

(AI2) 

(A13) 

(A14) 

The values of these thermodynamic properties at the coexis
tence boundary are obtained9 by taking () = ± 1. 

The values of the universal constantsp, 15, at> b 2, pji>and 
Sji are presented in Table III . ..!h~ values of the system-de
pendent constants a, ko, kt> C, Pi> Pw,uc, and,ui for CO2 are 
presented in Table IV. 

The scaled fundamental equation presented here repre
sents the thermodynamic surface of CO2 in the range oftem
peratures and pressures bounded by 
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