8 research outputs found
The evolution of oscillatory behavior in age-structured species
A major challenge in ecology is to explain why so many species show oscillatory population dynamics and why the oscillations commonly occur with particular periods. The background environment, through noise or seasonality, is one possible driver of these oscillations, as are the components of the trophic web with which the species interacts. However, the oscillation may also be intrinsic, generated by density-dependent effects on the life history. Models of structured single-species systems indicate that a much broader range of oscillatory behavior than that seen in nature is theoretically possible. We test the hypothesis that it is selection that acts to constrain the range of periods. We analyze a nonlinear single-species matrix model with density dependence affecting reproduction and with trade-offs between reproduction and survival. We show that the evolutionarily stable state is oscillatory and has a period roughly twice the time to maturation, in line with observed patterns of periodicity. The robustness of this result to variations in trade-off function and density dependence is tested
Cut Diagrams for High Energy Scatterings
A new approach is introduced to study QCD amplitudes at high energy and
comparatively small momentum transfer. Novel cut diagrams, representing
resummation of Feynman diagrams, are used to simplify calculation and to avoid
delicate cancellations encountered in the usual approach. Explicit calculation
to the 6th order is carried out to demonstrate the advantage of cut diagrams
over Feynman diagrams.Comment: uu-encoded file containing a latex manuscript with 14 postscript
figure
Recommended from our members
Hydrocarbon field size distributions: a case study in mixed integer nonlinear programming
Of key importance to oil and gas companies is the size distribution of fields in the areas that they are drilling. Recent arguments suggest that there are many more fields yet to be discovered in mature provinces than had previously been thought because the underlying distribution is monotonic not peaked. According to this view the peaked nature of the distribution for discovered fields reflects not the underlying distribution but the effect of economic truncation. This paper contributes to the discussion by analysing up-to-date exploration and discovery data for two mature provinces using the discovery-process model, based on sampling without replacement and implicitly including economic truncation effects. The maximum likelihood estimation involved generates a high-dimensional mixed-integer nonlinear optimization problem. A highly efficient solution strategy is tested, exploiting the separable structure and handling the integer constraints by treating the problem as a masked allocation problem in dynamic programming