428 research outputs found

    Properties of electrons near a Van Hove singularity

    Full text link
    The Fermi surface of most hole-doped cuprates is close to a Van Hove singularity at the M point. A two-dimensional electronic system, whose Fermi surface is close to a Van Hove singularity shows a variety of weak coupling instabilities. It is a convenient model to study the interplay between antiferromagnetism and anisotropic superconductivity. The renormalization group approach is reviewed with emphasis on the underlying physical processes. General properties of the phase diagram and possible deformations of the Fermi surface due to the Van Hove proximity are described.Comment: Proceedings of SNS-01 to appear in the Journal of Physics and Chemistry of Solids, SNS-0

    Fermi surface renormalization in Hubbard ladders

    Full text link
    We derive the one-loop renormalization equations for the shift in the Fermi-wavevectors for one-dimensional interacting models with four Fermi-points (two left and two right movers) and two Fermi velocities v_1 and v_2. We find the shift to be proportional to (v_1-v_2)U^2, where U is the Hubbard-U. Our results apply to the Hubbard ladder and to the t_1-t_2 Hubbard model. The Fermi-sea with fewer particles tends to empty. The stability of a saddle point due to shifts of the Fermi-energy and the shift of the Fermi-wavevector at the Mott-Hubbard transition are discussed.Comment: 5 pages, 4 Postscript figure

    Isotopic liftings of Clifford algebras and applications in elementary particle mass matrices

    Full text link
    Isotopic liftings of algebraic structures are investigated in the context of Clifford algebras, where it is defined a new product involving an arbitrary, but fixed, element of the Clifford algebra. This element acts as the unit with respect to the introduced product, and is called isounit. We construct isotopies in both associative and non-associative arbitrary algebras, and examples of these constructions are exhibited using Clifford algebras, which although associative, can generate the octonionic, non-associative, algebra. The whole formalism is developed in a Clifford algebraic arena, giving also the necessary pre-requisites to introduce isotopies of the exterior algebra. The flavor hadronic symmetry of the six u,d,s,c,b,t quarks is shown to be exact, when the generators of the isotopic Lie algebra su(6) are constructed, and the unit of the isotopic Clifford algebra is shown to be a function of the six quark masses. The limits constraining the parameters, that are entries of the representation of the isounit in the isotopic group SU(6), are based on the most recent limits imposed on quark masses.Comment: 19 page

    Diffusive energy transport in the S=1 Haldane chain compound AgVP2S6

    Full text link
    We present the results of measurements of the thermal conductivity κ\kappa of the spin S=1 chain compound AgVP_2S_6 in the temperature range between 2 and 300 K and with the heat flow directed either along or perpendicular to the chain direction. The analysis of the anisotropy of the heat transport allowed for the identification of a small but non-negligible magnon contribution κm\kappa_m along the chains, superimposed on the dominant phonon contribution κph\kappa_ph. At temperatures above about 100 K the energy diffusion constant D_E(T), calculated from the κm(T)\kappa_m(T) data, exhibits similar features as the spin diffusion constant D_S(T), previously measured by NMR. In this regime, the behaviour of both transport parameters is consistent with a diffusion process that is caused by interactions inherent to one-dimensional S=1 spin systems.Comment: 6 pages, 4 figure

    Characterization of neutrino signals with radiopulses in dense media through the LPM effect

    Get PDF
    We discuss the possibilities of detecting radio pulses from high energy showers in ice, such as those produced by PeV and EeV neutrino interactions. It is shown that the rich radiation pattern structure in the 100 MHz to few GHz allows the separation of electromagnetic showers induced by photons or electrons above 100 PeV from those induced by hadrons. This opens up the possibility of measuring the energy fraction transmitted to the electron in a charged current electron neutrino interaction with adequate sampling of the angular distribution of the signal. The radio technique has the potential to complement conventional high energy neutrino detectors with flavor information.Comment: 5 pages, 4 ps figures. Submitted to Phys. Rev. Let

    Quantum Monte Carlo simulation for the conductance of one-dimensional quantum spin systems

    Full text link
    Recently, the stochastic series expansion (SSE) has been proposed as a powerful MC-method, which allows simulations at low TT for quantum-spin systems. We show that the SSE allows to compute the magnetic conductance for various one-dimensional spin systems without further approximations. We consider various modifications of the anisotropic Heisenberg chain. We recover the Kane-Fisher scaling for one impurity in a Luttinger-liquid and study the influence of non-interacting leads for the conductance of an interacting system.Comment: 8 pages, 9 figure

    Superconducting and pseudogap phases from scaling near a Van Hove singularity

    Get PDF
    We study the quantum corrections to the Fermi energy of a two-dimensional electron system, showing that it is attracted towards the Van Hove singularity for a certain range of doping levels. The scaling of the Fermi level allows to cure the infrared singularities left in the BCS channel after renormalization of the leading logarithm near the divergent density of states. A phase of d-wave superconductivity arises beyond the point of optimal doping corresponding to the peak of the superconducting instability. For lower doping levels, the condensation of particle-hole pairs due to the nesting of the saddle points takes over, leading to the opening of a gap for quasiparticles in the neighborhood of the singular points.Comment: 4 pages, 6 Postscript figures, the physical discussion of the results has been clarifie

    Prevalence of iron deficiency anaemia and risk factors in 1,010 adolescent girls from rural Maharashtra, India: a cross-sectional survey

    Get PDF
    Objective: Iron deficiency anaemia (IDA) is the most common nutritional disorder observed in adolescent girls in India. Our aim was to investigate the prevalence and risk factors associated with IDA in rural Maharashtra, India to address current evidence gaps. Study Design: Cross sectional survey Methods: The study recruited 13 to 17 year old adolescent girls living in 34 villages of Osmanabad district. Data were collected on individual health, dietary, sociodemographic factors, and anthropometric measurements were taken. Haemoglobin (Hb) levels were measured using Sahli’s hemometer. Logistic and linear regressions were used to identify risk factors associated with IDA and Hb level respectively. Results: Among 1,010 adolescent girls (response rate 97.5%), the mean Hb was 10.1 g/dl (standard deviation=1.3), and 87% had anaemia (Hb<12 g/dl). The prevalence of mild (11.0-11.9 g/dl), moderate (8.0-10.9 g/dl) and severe (Hb≤ 7.9 g/dl) anaemia was 17%, 65% and 5% respectively. Anaemia likelihood increased significantly with age (odds ratio (OR): 1.41 per year, 95% confidence interval (CI): 1.17 to 1.70). Factors associated with decreased anaemia risk were mid upper arm circumference (MUAC) ≥22 cm (OR: 0.51, 95% CI: 0.31 to 0.82), ≥3 days/week consumption of fruit (OR: 0.35, 95% CI: 0.23 to 0.54) or rice (OR: 0.39, 95% CI: 0.17 to 0.91), and incomplete schooling (OR: 0.47, 95% CI: 0.24 to 0.91). In the final model lower age, MUAC and fruit consumption were significantly associated with Hb level. Conclusion: Anaemia prevalence was extremely high among adolescent girls in rural areas of Maharashtra. Whilst we identified risk factors that could be used for targeting interventions, there is urgent need of comprehensive preventative interventions for the whole adolescent girl population

    Thermal Conductivity of Spin-1/2 Chains

    Full text link
    We study the low-temperature transport properties of clean one-dimensional spin-1/2 chains coupled to phonons. Due to the presence of approximate conservation laws, the heat current decays very slowly giving rise to an exponentially large heat conductivity, κ eT/T\kappa ~ e^{T^*/T}. As a result of an interplay of Umklapp scattering and spinon-phonon coupling, the characteristic energy scale TT^* turns out to be of order ΘD/2\Theta_D/2, where ΘD\Theta_D is the Debye energy, rather than the magnetic exchange interaction JJ -- in agreement with recent measurements in SrCuO compounds. A large magnetic field strongly affects the heat transport by two distinct mechanisms. First, it induces a LINEAR spinon--phonon coupling, which alters the nature of the T>0T -> 0 fixed point: the elementary excitations of the system are COMPOSITE SPINON-PHONON objects. Second, the change of the magnetization and the corresponding change of the wave vector of the spinons strongly affects the way in which various Umklapp processes can relax the heat current, leading to a characteristic fractal--like spiky behavior of κ\kappa when plotted as a function of magnetization at fixed T.Comment: 16 pages, RevTex4, 2 figures included; revised refs. and some useful comments on experimental relevance. On July 12 2005, added an appendix correcting an error in the form of the phonon propagator. The main result is unchange

    Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model

    Get PDF
    We devise a computational approach to the Hubbard model that captures the strong coupling dynamics arising when the Fermi level is at a Van Hove singularity in the density of states. We rely on an approximate degeneracy among the many-body states accounting for the main instabilities of the system (antiferromagnetism, d-wave superconductivity). The Fermi line turns out to be deformed in a manner consistent with the pinning of the Fermi level to the Van Hove singularity. For a doping rate δ0.2\delta \sim 0.2, the ground state is characterized by d-wave symmetry, quasiparticles gapped only at the saddle-points of the band, and a large peak at zero momentum in the d-wave pairing correlations.Comment: 4 pages, 2 Postscript figure
    corecore