89 research outputs found

    The Conway-Kochen argument and relativistic GRW models

    Get PDF
    In a recent paper, Conway and Kochen proposed what is now known as the "Free Will theorem" which, among other things, should prove the impossibility of combining GRW models with special relativity, i.e., of formulating relativistically invariant models of spontaneous wavefunction collapse. Since their argument basically amounts to a non-locality proof for any theory aiming at reproducing quantum correlations, and since it was clear since very a long time that any relativistic collapse model must be non-local in some way, we discuss why the theorem of Conway and Kochen does not affect the program of formulating relativistic GRW models.Comment: 16 pages, RevTe

    Quantum Locality

    Full text link
    It is argued that while quantum mechanics contains nonlocal or entangled states, the instantaneous or nonlocal influences sometimes thought to be present due to violations of Bell inequalities in fact arise from mistaken attempts to apply classical concepts and introduce probabilities in a manner inconsistent with the Hilbert space structure of standard quantum mechanics. Instead, Einstein locality is a valid quantum principle: objective properties of individual quantum systems do not change when something is done to another noninteracting system. There is no reason to suspect any conflict between quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections elsewhere. To appear in Foundations of Physic

    The emergence of a new source of X-rays from the binary neutron star merger GW170817

    Get PDF
    The binary neutron-star (BNS) merger GW170817 is the first celestial object from which both gravitational waves (GWs) and light have been detected enabling critical insight on the pre-merger (GWs) and post-merger (light) physical properties of these phenomena. For the first ∼3\sim 3 years after the merger the detected radio and X-ray radiation has been dominated by emission from a structured relativistic jet initially pointing ∼15−25\sim 15-25 degrees away from our line of sight and propagating into a low-density medium. Here we report on observational evidence for the emergence of a new X-ray emission component at δt>900\delta t>900 days after the merger. The new component has luminosity Lx≈5×1038ergs−1L_x \approx 5\times 10^{38}\rm{erg s^{-1}} at 1234 days, and represents a ∼3.5σ\sim 3.5\sigma - 4.3σ4.3\sigma excess compared to the expectations from the off-axis jet model that best fits the multi-wavelength afterglow of GW170817 at earlier times. A lack of detectable radio emission at 3 GHz around the same time suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with synchrotron emission from a mildly relativistic shock generated by the expanding merger ejecta, i.e. a kilonova afterglow. In this context our simulations show that the X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. However, radiation from accretion processes on the compact-object remnant represents a viable alternative to the kilonova afterglow. Neither a kilonova afterglow nor accretion-powered emission have been observed before.Comment: 66 pages, 12 figures, Submitte

    MIGHTEE : total intensity radio continuum imaging and the COSMOS/XMM-LSS Early Science fields

    Get PDF
    Please read abstract in the article.The UK Science and Technology Facilities Council; the South African Radio Astronomy Observatory; the Leverhulme Trust through an Early Career Research Fellowship; the South African Research Chairs Initiative of the Department of Science and Technology; the National Research Foundation; the Science and Technology Foundation (FCT, Portugal); the UK STFC ; the South African Research Chairs Initiative of the Department of Science and Innovation; the Bundesministerium für Bildung und Forschung (BMBF); the Italian Ministry of Foreign Affairs and International Cooperation; the South African Department of Science and Technology’s National Research Foundation (DST-NRF).https://academic.oup.com/mnrashj2022Physic

    The MeerKAT Galaxy Cluster Legacy Survey: I. Survey overview and highlights

    Get PDF
    Please abstract in the article.The South African Radio Astronomy Observatory (SARAO), the National Research Foundation (NRF), the National Radio Astronomy Observatory, US National Science Foundation, the South African Research Chairs Initiative of the DSI/NRF, the SARAO HCD programme, the South African Research Chairs Initiative of the Department of Science and Innovation.http://www.aanda.orghj2022Physic
    • …
    corecore