2,673 research outputs found
Do trophic subsidies affect the outcome of introductions of a non-native freshwater fish?
Understanding how environmental variables and human disturbances influence the outcomes of introductions of non-native freshwater fish is integral to their risk management. This can be complex in freshwater ecosystems that receive subsidies that increase food availability, as these may influence the outcome of introductions through promoting the survival, reproduction and establishment of the introduced propagules through increasing their access to food resources. We determined how natural and/or artificial trophic subsidies affected the reproduction and establishment of the introduced topmouth gudgeon (Pseudorasbora parva) in replicated pond mesocosms. The mesocosms all started with eight mature fish and were run for 100 days during their reproductive season. The subsidies consisted of natural terrestrial prey and/or fishmeal pellets (a common trophic subsidy that can be significant in systems that are used as sport fisheries or for aquaculture). After 100 days, fish in the natural subsidy ponds showed minimal growth and very low reproductive output. Analysis of δC and δN indicated that their progeny, 0+ fish produced in the ponds, exploited the terrestrial prey. By contrast, in ponds where pellets were added, mineral nutrient availability and primary production were significantly increased, and the mature fish fed mainly on the aquatic resources. The increased productivity of the ponds significantly increased fish growth and fitness, resulting in high numbers of 0+ individuals that did feed on the pellets. Thus, subsidies that can increase both primary production and food resources (such as pelletised fishmeal) can significantly influence the ability of colonists to establish a population rapidly. Management efforts to minimise the risk of introductions should thus consider the role of these types of allochthonous subsidies. © 2013 The Authors. Freshwater Biology published by John Wiley & Sons Ltd
Subdynamic asymptotic behavior of microfluidic valves
Decreasing the Reynolds number of microfluidic
no-moving-part flow control valves considerably below the usual operating range leads to a distinct “subdynamic” regime of viscosity- dominated flow, usually entered through a clearly defined transition. In this regime, the dynamic effects on which the operation of large-scale no-moving-part fluidic valves is based, cease to be useful, but fluid may be driven through the valve (and any
connected load) by an applied pressure difference, maintained by an external pressure regulator. Reynolds number ceases to characterize the valve operation, but the driving pressure effect is usefully characterized by a newly introduced dimensionless number and it is this parameter which determines the valve behavior. This summary paper presents information about the subdynamic regime using data (otherwise difficult to access) obtained for several recently developed flow control valves. The purely subdynamic regime is an extreme. Most present-day microfluidic valves are operated at higher Re, but the paper shows that the laws governing subdynamic flows provide relations useful as an asymptotic reference
Development of a microfluidic unit for sequencing fluid samples for composition analysis
A microfluidic sample-sequencing unit was developed as a part of a high-throughput catalyst screening facility. It may find applications wherever a fluid is to be selected
for analysis from any one of several sources, such as microreactors operating in parallel. The novel feature is that the key components are fluidic valves having no moving parts and operating at very low sample flow Reynolds numbers, typically below 100. The inertial
effects utilized in conventional no-moving-part fluidics are nearly absent; instead, the flows are pressure-driven. Switching between input channels is by high-Reynolds-number control flows, the jet pumping effect of which simultaneously cleans the downstream cavities to prevent crosscontamination between the samples. In the configuration discussed here, the integrated circuit
containing an array of 16 valves is etched into an 84mm diameter stainless steel foil. This is clamped into a massive assembly containing 16 mini-reactors operated at up to 400C and 4 MPa. This paper describes the design basis and experience with prototypes. Results of CFD
analysis, with scrutiny of some discrepancies when compared with flow visualization, is included
The Growth of Black Holes and Bulges at the Cores of Cooling Flows
Central cluster galaxies (cDs) in cooling flows are growing rapidly through
gas accretion and star formation. At the same time, AGN outbursts fueled by
accretion onto supermassive black holes are generating X-ray cavity systems and
driving outflows that exceed those in powerful quasars. We show that the
resulting bulge and black hole growth follows a trend that is roughly
consistent with the slope of the local (Magorrian) relation between bulge and
black hole mass for nearby quiescent ellipticals. However, a large scatter
suggests that cD bulges and black holes do not always grow in lock-step. New
measurements made with XMM, Chandra, and FUSE of the condensation rates in
cooling flows are now approaching or are comparable to the star formation
rates, alleviating the need for an invisible sink of cold matter. We show that
the remaining radiation losses can be offset by AGN outbursts in more than half
of the systems in our sample, indicating that the level of cooling and star
formation is regulated by AGN feedback.Comment: 3 pages, 4 figures, to appear in the proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies," edited by H. Boehringer, P.
Schuecker, G. W. Pratt, and A. Finogueno
A Comprehensive Survey of Brane Tilings
An infinite class of gauge theories can be engineered on
the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of
setup has multiple applications, ranging from the gauge/gravity correspondence
to local model building in string phenomenology. Brane tilings fully encode the
gauge theories on the D3-branes and have substantially simplified their
connection to the probed geometries. The purpose of this paper is to push the
boundaries of computation and to produce as comprehensive a database of brane
tilings as possible. We develop efficient implementations of brane tiling tools
particularly suited for this search. We present the first complete
classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and
the corresponding brane tilings. This classification is of interest to both
physicists and mathematicians alike.Comment: 39 pages. Link to Mathematica modules provide
Back-flow ripples in troughs downstream of unit bars: Formation, preservation and value for interpreting flow conditions
Back-flow ripples are bedforms created within the lee-side eddy of a larger bedform with migration directions opposed or oblique to that of the host bedform. In the flume experiments described in this article, back-flow ripples formed in the trough downstream of a unit bar and changed with mean flow velocity; varying from small incipient back-flow ripples at low velocities, to well-formed back-flow ripples with greater velocity, to rapidly migrating transient back-flow ripples formed at the greatest velocities tested. In these experiments back-flow ripples formed at much lower mean back-flow velocities than predicted from previously published descriptions. This lower threshold mean back-flow velocity is attributed to the pattern of velocity variation within the lee-side eddy of the host bedform. The back-flow velocity variations are attributed to vortex shedding from the separation zone, wake flapping and increases in the size of, and turbulent intensity within, the flow separation eddy controlled by the passage of superimposed bedforms approaching the crest of the bar. Short duration high velocity packets, whatever their cause, may form back-flow ripples if they exceed the minimum bed shear stress for ripple generation for long enough or, if much faster, may wash them out. Variation in back-flow ripple cross-lamination has been observed in the rock record and, by comparison with flume observations, the preserved back-flow ripple morphology may be useful for interpreting formative flow and sediment transport dynamics
A method for isolating and culturing placental cells from failed early equine pregnancies
Early pregnancy loss occurs in 6–10% of equine pregnancies making it the main cause of reproductive wastage. Despite this, reasons for the losses are known in only 16% of cases. Lack of viable conceptus material has inhibited investigations of many potential genetic and pathological causes. We present a method for isolating and culturing placental cells from failed early equine pregnancies. Trophoblast cells from 18/30 (60%) failed equine pregnancies of gestational ages 14–65 days were successfully cultured in three different media, with the greatest growth achieved for cells cultured in AmnioChrome™ Plus. Genomic DNA of a suitable quality for molecular assays was also isolated from 29/30 of these cases. This method will enable future investigations determining pathologies causing EPL
Phonons and specific heat of linear dense phases of atoms physisorbed in the grooves of carbon nanotube bundles
The vibrational properties (phonons) of a one-dimensional periodic phase of
atoms physisorbed in the external groove of the carbon nanotube bundle are
studied. Analytical expressions for the phonon dispersion relations are
derived. The derived expressions are applied to Xe, Kr and Ar adsorbates. The
specific heat pertaining to dense phases of these adsorbates is calculated.Comment: 4 PS figure
Evolution of cosmic string configurations
We extend and develop our previous work on the evolution of a network of
cosmic strings. The new treatment is based on an analysis of the probability
distribution of the end-to-end distance of a randomly chosen segment of
left-moving string of given length. The description involves three distinct
length scales: , related to the overall string density, , the
persistence length along the string, and , describing the small-scale
structure, which is an important feature of the numerical simulations that have
been done of this problem. An evolution equation is derived describing how the
distribution develops in time due to the combined effects of the universal
expansion, of intercommuting and loop formation, and of gravitational
radiation. With plausible assumptions about the unknown parameters in the
model, we confirm the conclusions of our previous study, that if gravitational
radiation and small-scale structure effects are neglected, the two dominant
length scales both scale in proportion to the horizon size. When the extra
effects are included, we find that while and grow,
initially does not. Eventually, however, it does appear to scale, at a much
lower level, due to the effects of gravitational back-reaction.Comment: 61 pages, requires RevTex v3.0, SUSSEX-TH-93/3-4,
IMPERIAL/TP/92-93/4
Can inflationary models of cosmic perturbations evade the secondary oscillation test?
We consider the consequences of an observed Cosmic Microwave Background (CMB)
temperature anisotropy spectrum containing no secondary oscillations. While
such a spectrum is generally considered to be a robust signature of active
structure formation, we show that such a spectrum {\em can} be produced by
(very unusual) inflationary models or other passive evolution models. However,
we show that for all these passive models the characteristic oscillations would
show up in other observable spectra. Our work shows that when CMB polarization
and matter power spectra are taken into account secondary oscillations are
indeed a signature of even these very exotic passive models. We construct a
measure of the observability of secondary oscillations in a given experiment,
and show that even with foregrounds both the MAP and \pk satellites should be
able to distinguish between models with and without oscillations. Thus we
conclude that inflationary and other passive models can {\em not} evade the
secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements
have been made to the discussion and new data has been included. The
conclusions are unchagne
- …
