425 research outputs found

    Real-time control of a laboratory heat exchanger using the particle swarm optimisation algorithm

    Get PDF
    In the past decade, evolutionary based algorithms have been a popular research theme in many disciplinary areas like control systems. Although, due to the computational load required, this type of algorithms usually are applied off-line. In this paper, a stochastic search algorithm known as particle swarm is used as an optimisation tool for on-line control of a custom made laboratory thermodynamic system

    Hardware-in-the-loop control using the particle swarm optimisation

    Get PDF
    In the last two decades, evolutionary based algorithms have proved to be an important tool in solving optimisation problems in many disciplinary areas namely in control system design. However one of its limitations, for some type of applications, is the usually high computational load required, which restricts its use for on-line control. This paper proposes the use of a stochastic search algorithm, known as particle swarm, as an optimisation tool for an on-line predictive control of a custom made thermodynamic system. Preliminary results are presented

    Greenhouse air temperature control using the particle swarm optimisation algorithm

    Get PDF
    The particle swarm optimisation algorithm is proposed as a new method to design a model based predictive controller subject to restrictions. Its performance is compared with the one obtained by using a genetic algorithm for the environmental temperature control of a greenhouse. Controller outputs are computed in order to optimise future behaviour of the greenhouse environment, regarding set-point tracking and minimisation of the control effort over a prediction horizon of one hour with a one-minute sampling period

    Greenhouse air temperature modelling

    Get PDF
    This paper describes two implementation approaches for modelling the air temperature of an automated greenhouse located in the campus of the University of Trás-os- Montes e Alto Douro. Linear models, based in the discretization of the heat transfer physical laws, and non-linear neural networks models are used. These models are describes as functions of the outside climate and control actions performed for heating and cooling. Results are presented to illustrate the performance of each model in the simulation and prediction of the greenhouse air temperature. The data used to compute the simulation models was collected with a PC-based acquisition and control system using a sampling time interval of 1 minute.The authors appreciate the support of the Portuguese Foundation for Science and Technology (FCT) through the project MGS/ 33906/2000

    On-line control using the particle swarm optimisation algorithm

    Get PDF
    In the last two decades, evolutionary based algorithms have proved to be an important tool in solving optimisation problems in many disciplinary areas, namely in control system design. However one of its limitations for some type of applications is the usually high computational load required, which restricts its use for on-line control. This paper proposes the use of a stochastic search algorithm, known as particle swarm, as an optimisation tool for an on-line model predictive control of a custom made laboratory thermodynamic system. Preliminary results are presented

    Automation and control of the SORTEGEL wastewater plant

    Get PDF
    Food Processing Industries produce large amounts of wastewater with high environmental impact. Due to the high content of suspended matter and inadequate pH value of the wastewater, national laws prohibit direct discharges of the influent to the environment. This work describes the design and operation of a wastewater treatment plant installed in the Sortegel food-processing company located in Sortes, Portugal. This industry uses the water collected from groundwater wells to process raw materials and to wash the equipments, being the volume of wastewater produced season dependent (80 to 300m3/day). Results show that the implemented wastewater treatment plant and the automation solutions generate treated effluents that comply with the Portuguese legislation

    Scanning Fourier Spectroscopy: A microwave analog study to image transmission paths in quantum dots

    Full text link
    We use a microwave cavity to investigate the influence of a movable absorbing center on the wave function of an open quantum dot. Our study shows that the absorber acts as a position-selective probe, which may be used to suppress those wave function states that exhibit an enhancement of their probability density near the region where the impurity is located. For an experimental probe of this wave function selection, we develop a technique that we refer to as scanning Fourier spectroscopy, which allows us to identify, and map out, the structure of the classical trajectories that are important for transmission through the cavity.Comment: 4 pages, 5 figure

    Articaine in functional NLC show improved anesthesia and anti-inflammatory activity in zebrafish

    Get PDF
    Indexación ScopusAnesthetic failure is common in dental inflammation processes, even when modern agents, such as articaine, are used. Nanostructured lipid carriers (NLC) are systems with the potential to improve anesthetic efficacy, in which active excipients can provide desirable properties, such as anti-inflammatory. Coupling factorial design (FD) for in vitro formulation development with in vivo zebrafish tests, six different NLC formulations, composed of synthetic (cetyl palmitate/triglycerides) or natural (avocado butter/olive oil/copaiba oil) lipids were evaluated for loading articaine. The formulations selected by FD were physicochemically characterized, tested for shelf stability and in vitro release kinetics and had their in vivo effect (anti-inflammatory and anesthetic effect) screened in zebrafish. The optimized NLC formulation composed of avocado butter, copaiba oil, Tween 80 and 2% articaine showed adequate physicochemical properties (size = 217.7 ± 0.8 nm, PDI = 0.174 ± 0.004, zeta potential = − 40.2 ± 1.1 mV, %EE = 70.6 ± 1.8) and exhibited anti-inflammatory activity. The anesthetic effect on touch reaction and heart rate of zebrafish was improved to 100 and 60%, respectively, in comparison to free articaine. The combined FD/zebrafish approach was very effective to reveal the best articaine-in-NLC formulation, aiming the control of pain at inflamed tissues. © 2020, The Author(s).https://www-nature-com.recursosbiblioteca.unab.cl/articles/s41598-020-76751-

    Transport spectroscopy in a time-modulated open quantum dot

    Full text link
    We have investigated the time-modulated coherent quantum transport phenomena in a ballistic open quantum dot. The conductance GG and the electron dwell time in the dots are calculated by a time-dependent mode-matching method. Under high-frequency modulation, the traversing electrons are found to exhibit three types of resonant scatterings. They are intersideband scatterings: into quasibound states in the dots, into true bound states in the dots, and into quasibound states just beneath the subband threshold in the leads. Dip structures or fano structures in GG are their signatures. Our results show structures due to 2ω\hbar\omega intersideband processes. At the above scattering resonances, we have estimated, according to our dwell time calculation, the number of round-trip scatterings that the traversing electrons undertake between the two dot openings.Comment: 8 pages, 5 figure
    corecore