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Abstract: The particle swarm optimisation algorithm is proposed as a new method to 
design a model based predictive controller subject to restrictions. Its performance is 
compared with the one obtained by using a genetic algorithm for the environmental 
temperature control of a greenhouse. Controller outputs are computed in order to optimise 
future behaviour of the greenhouse environment, regarding set-point tracking and  
minimisation of the control effort over a prediction horizon of one hour with a one-minute 
sampling period. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Greenhouses are building structures that allow the 
creation of an indoor microclimate for crop 
development, protecting it from adverse outdoor 
conditions. Moreover this microclimate can be 
modified by artificial actuations such as heating, 
ventilation and CO2 supply in order to provide the 
best environmental conditions. This non-natural 
environmental conditions are achieved by additional 
energy spend in the production, requiring a regulator 
that minimises the energy consumption while 
keeping the state variables as close as possible to the 
optimum crop physiological reference. The use of 
model predictive controllers (MPC) for greenhouse 
indoor environment control has the advantage of 
providing the system with the ability to react before 
any deviations in the controlled variable take place, 
avoiding delays in the system response (Nielsen and 
Madsen, 1996). This class of control algorithms must 
employ models to describe and predict the evolution 
of the variables required for crop development over a 
specified time horizon. The MPC operation, within a 

process with bounded signals, usually involves the 
solution of a quadratic programming problem. This 
optimisation procedure is a fundamental part of 
model based predictive control. The controller states 
are obtained by iterative numerical procedures that 
can be based on deterministic or stochastic 
algorithms. The optimiser must be able to handle 
constraints to model physical bounds such as 
actuator saturation. Commonly, magnitude and rate 
constraints are considered for the control actions and 
level constraints are considered for the outputs. 
Model predictive control cost functions, when 
subjected to restrictions, defines a very complex, 
non-linear, non-convex search space, hence suitable 
for evolutionary algorithms optimisation.   
 
 
2. MODEL PREDICTIVE CONTROL OVERVIEW 
 
Model Predictive Control (Clarke, et al., 1987), 
comprise a collection of control methods having in 
common the fact that the controller is based on the 
future predictions of the system behaviour using a 



 

     

mathematical model of the plant. There are several 
predictive control algorithms based on process 
models. These algorithms differ from each other only 
in the system or disturbances model structure and on 
the objective function to be minimised (Camacho and 
Bordons, 1994). 
 
The performance of MPC depends largely on the 
accuracy of the process model. This performance 
increases as process-model mismatch decreases. The 
estimated model must be as simplest as possible and 
capable of describing the system dynamics in a way 
to predict, with some precision, future outputs. So, a 
large part of the design effort is related to system 
modelling and identification.  
 
MPC involves the computation of a sequence of 
future control values for which it is expected that the 
system output tracks a given input reference. The 
methodology underlying these type of controllers is 
characterized by the strategy illustrated in figure 1 
(Camacho and Bordons, 1994). 
 

 
 
Fig. 1. Basic strategy of a model based predictive 

controller. 
 
Future outputs for a horizon L (prediction horizon), 
are predicted for each sample k using the process 
model. The predicted output y(k+j/k) for j=1,�,L is 
based on past inputs and outputs as well as future 
values of the control signal. The collection of the 
future control signals are computed by optimising a 
predefined criterion in order to maintain the process 
output as close as possible to the reference w(k). This 
criterion normally takes the form of a quadratic 
function of the error between the predicted output 
and the set point. In most cases, the control effort is 
included in the objective function in order to avoid 
abrupt changes in the control action. 
 
Future control actions are computed optimising a 
specified cost function governed by the following 
expressions: 
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where ε(k+j|k) is the prediction error between the 
future trajectory and output, ∆u(k+j-1) represents the 
control effort, λ1 and λ2 are weights for each 
component, a and b represent the maximum and 
minimum prediction horizon, and c characterize the 
control horizon. Constants a and b represent the 
instant limits in which it is desirable that the output 
follows the reference.  
 
The reference trajectory w(k+j) is sometimes 
different from the real reference (Clarke, et al., 
1987). Normally, a soft approximation from the 
actual value of the output towards the known 
reference is considered. This approach avoids abrupt 
changes in the control action by means of less 
aggressive responses. The shaped reference w(k+j) is 
often approximated by using a first-order lag model 
as described by equations (3) to (4). 
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with [ ]0,1α ∈ , j=1,2,�, and r(k) denotes the real 
reference. 
 

 
3. THE PARTICLE SWARM OPTIMISATION 

ALGORITHM 
 
Kennedy and Eberhart (1995) proposed the Particle 
Swarm Optimisation (PSO) algorithm, conceptually 
based on the social behaviour of groups of 
organisms such as herds, schools and flocks. As an 
evolutionary technique the PSO is a population 
based algorithm, formed by a set of particles, which 
represent a potential solution for a given problem. 
Each particle moves through a n-dimensional search 
space (as birds in a flock), with an associated 
position vector Xi(t)={xi1(t),xi2(t),�,xin(t)} and 
velocity vector Vi(t)={vi1(t),vi2(t),�,vin(t)} for the 
current evolutionary iteration t.   
 
The original PSO model integrates two types of 
knowledge acquisition by a particle: through it's own 
experience and from social sharing from other 
population members. The former was termed 
cognition-only model and the latest social-only 
model (Kennedy, 1997). The behaviour of each 
particle is based on these two types of knowledge 
and their current position regarding the search.  
Kennedy modelled particle behaviour by using the 
following equations: 
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in which d represents the dimension index, nd ≤≤1 , 
pid(t) represents the best previous position of particle 
i in the current iteration t, pgd(t) represents the global 
best in the current iteration for a pre-defined 
neighbourhood type.  Parameter ϕ1 is known as the 
cognitive constant and ϕ2 as the social constant, that 
represent uniformly distributed random numbers 
generated in a pre-defined interval. 
 
An additional parameter was incorporated into 
equation (7) (Shi and Eberhart, 1999) resulting in 
equation (9): 
  

( ) ( ) 1 21 ( ). . ( ) . ( )id id id idv t t v t co t so tω ϕ ϕ+ = + +  (9) 

 
in which ω(t) represents the inertia weight. The value 
given to the inertia weight will affect the type of 
search in the following way: a large ω will direct the 
PSO for a global search while a small ω will direct 
the PSO for a local search. The parameter can vary 
linearly from a larger value to a smaller value in 
order to make the search global in the early run and 
local in the end of the run. Constants ϕ1, ϕ2 and ω 
can be interpreted as the confidence that each particle 
has in the current position, its own experience and its 
neighbours experience, respectively.  
 
The neighbourhood can be of different size and 
topology. Each particle can take into account either:  
(i) the social information from a list of particles pre-
defined in the beginning of the simulated evolution. 
The list can incorporate all the population 
individuals, with an individual being able to use the 
best solution found by every other member. This full-
connected social network structure was termed Star. 
In other list definitions, an individual uses only k 
adjacent neighbours organised in a Circle and Wheel 
topologies (Kennedy and Eberhart, 2001).  
(ii) the physical information which considers distance 
between neighbour individual evaluated using some 
metric definition.   
  
A simplified version of equation (7) was proposed by 
Clerc and Kennedy (2000) by considering ϕ1=ϕ2=ϕ 
and defining an intermediate position pig in between 
the best previous position pi and the global best pg 
defined by equation (10): 
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resulting in a modified velocity governed by equation 
(11):   
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Clerc (1999) proposed the use of a constriction 
coefficient χ that is incorporated in the simplified 
velocity equation by: 
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with ϕ≥4. The constriction coefficient can be 
evaluated by using the following equation:  
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The effect of this coefficient is to promote 
convergence over time. Parameters k=1 and ϕ=4.1 
are suggested (Kennedy and Eberhart, 2001) as good 
values to use. Another version of the constriction 
method results in the following modification of 
velocity equation (9): 
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The velocity is limited by a maximum, Vmax, 
meaning the maximum jump that each particle can 
make in one iteration. The selected value for Vmax 
should not be too high to avoid oscillations, or too 
low to avoid search traps. The inertia weight and 
maximum velocity parameters selection in the PSO 
algorithm was studied and reported by Shi and 
Eberhart (1998). Each particle position should also 
be located within its dynamic range [Xmin,Xmax].    
 
 

4. PROBLEM STATEMENT 
 
The problem addressed in this report is to control the 
air temperature within a greenhouse using a MPC 
strategy. The quadratic programming (QP) problem 
underlying this type of controller is solved iteratively 
using the PSO algorithm and the results compared 
with the one obtained by using a genetic algorithm 
(GA).  
 
If a MPC control strategy is to be included within a 
greenhouse, it is essential to have dynamic models 
that describe the greenhouse crop production process 
evolution as well as the control and exogenous 
inputs. The dynamic changes in the greenhouse are 
determined by differences in energy and mass 
contents between the inside and outside air, from 
exogenous energy as solar radiation or outdoor 
temperature and through the control actions taken. 
The energy balance of the greenhouse air is affected 
by energy supply and energy losses. The former is 
due to an artificial heating system and heat load 
imposed by the sun and the latest due to transmission 
through greenhouse cover and forced ventilation. 
Other energy and mass transport phenomena, for 
instance at the greenhouse soil are neglected due to 
its unimportant contribution to the overall air 
temperature. 
 
Assuming that the greenhouse climate can be 
described by a linear system around an operating 
point, the greenhouse air temperature model will be 
described by the following first order auto-regressive 
parametric equation with exogenous inputs. 
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where T is the sampling interval (in this case 1 
minute), q-1 is the backward shift operator, Ti and To 
indoor and outdoor temperatures, Ro the outdoor solar 
radiation and V and H the artificial ventilation and 
heating. The model parameters α, β1, β2, β3 and β4 
represent the partial contributions of each physical 
variable in the overall greenhouse air temperature. 
Since the model parameters are time varying 
(Boaventura Cunha et al., 1998), recursive 
identification techniques associated with the U-D 
factorisation algorithm (Åström and Wittenmark, 
1989) were applied to estimate their values. 
 
Auto-regressive models, described generically by 
equation (16), were applied to describe the outside air 
temperature and solar radiation [9]. 
 

1( ) ( ) ( )TSy kT A q kTξ−⋅ =  (16) 
 
In which A is a 4th order polynomial in q-1 and yTS is 
the time series to be modelled. 
 
The meteorological data used was acquired with a 
sampling period of one minute in a greenhouse 
located at the Universidade de Trás-os-Montes e Alto 
Douro in the North of Portugal. The air temperature 
control in that particular greenhouse is accomplished 
by using two actuators, a ventilator with a flow rate 
of 38000 m3/h and a gas heating system with a 
heating power of 100416 KJ/h. 
 
In order to use evolutionary algorithms as design 
tools within the predictive control framework it is 
necessary to modify them accordingly. The 
prediction steps are represented by population 
members that correspond to genes and space 
coordinates in the GA and PSO algorithms 
respectively. Thus, control actions ∆u to be applied 
to the system in a specified future time are encoded 
into corresponding data structures that form the 
population. In each generation/epoch the best two 
solutions found are shifted one position toward the 
present instant and introduced in the population of 
the next generation. The size of the population must 
be related to the size of the search space, ensuring a 
sufficient number of points for the evolutionary 
algorithm prospect. In the present case a population 
of size n=100 was found to be suitable. The 
convergence rate of the first gene/coordinate was 
used as a stop criterion. The search algorithm stops if 
the convergence rate does not change in 30 
generations/epochs.  
 
 

5. SIMULATION RESULTS 
 
In this section, simulated results obtained for indoor 
greenhouse temperature control using a MPC 

strategy are reported. The quadratic programming 
problem with linear restrictions is solved using the 
PSO and a GA. Tuning parameters for both 
algorithms are described in tables 1 and 2. 

 
Table 1 Particle swarm algorithm settings 

 
Population size 100 

1ϕ  (0.0, 2.0)Ν  

2ϕ  (0.0, 2.0)Ν  
ω  Linear decay 
Coding scheme 
 

Float 

 
Table 2 Genetic algorithm settings 

 
Population size 100 
Mutation probability 0.1 
Crossover probability 0.75 
Selection strategy Tournament 
Coding scheme Float 
Elitism 
 

Yes 

 
For control purposes, the objective function to be 
minimized is described by:  
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After an enormous number of experiments, λ1 =0.6 
and λ2 =0.4 are found to be suitable to solve the 
addressed problem. The performance of each 
optimisation algorithms is analysed in three different 
aspects: The set-point accuracy (18), the energy 
consumption (19 and 20) and the computing time 
required (21). 
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The set-point have a square shape with different 
indoor temperature levels for the night and day 
periods. 
  
Table 3 shows the results obtained for the criteria 
defined by equations (18,19,20 and 21). Figures 2 to 
5 represent the simulated set-point tracking 
responses for the period of one day obtained with 
PSO and GA, respectively. 
 



 

     

 
Table 3 Simulation results using PSO and GA 

 
 PSO GA 
SPe 0.0035 0.0085 
EH 380.34 384.52 
EV 228.20 228.45 
CT 
 

258.04 302.18 

 

 
Fig. 2. Set-point tracking results using the PSO 

algorithm. 
 

 
Fig. 3. Ventilation and heating actuations computed  

with the PSO. 
 

 
Fig. 4. Set-point tracking results using the GA. 
 

 
Fig. 5. Ventilation and heating actuations computed 

with the GA. 

6. CONCLUSION 
 

The particle swarm optimisation algorithm was 
proposed as a new method to design a greenhouse air 
temperature model predictive controller subject to 
restrictions. The controller outputs are computed in 
order to optimise future behaviour of the greenhouse 
environment, regarding set-point tracking and 
minimisation of the control effort over a prediction 
horizon of one hour with a one-minute sampling 
period. By observation of the simulation results, one 
can conclude that the PSO algorithm was able to 
reduce the set-point tracking error in approximately 
40% relatively to the minimum error achieved by the 
genetic algorithm. Simultaneously it was able to 
decrease the heating consumption in 1.2%, the 
ventilation requirements by 0.1% and the algorithm 
run time in 14%. 
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