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ABSTRACT 
 
In the past decade, evolutionary based algorithms have been a popular research theme in many 
disciplinary areas like control systems. Although, due to the computational load required, this type of 
algorithms usually are applied off-line. In this paper, a stochastic search algorithm known as particle 
swarm is used as an optimisation tool for on-line control of a custom made laboratory thermodynamic 
system. 
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1. INTRODUCTION 
 
In this work, a model predictive controller is applied to regulate the air temperature of a 
thermodynamic laboratory process. This type of control strategy have become very popular since the 
80's [1] and, comparing to other control algorithm, has the advantage of providing the system with the 
ability to react before any deviations in the controlled variable takes place. This anticipatory behaviour 
of the controller is achieved by using a model of the process in order to predict the system response in 
view of a given set of future control actions. The control values to be injected in the system for a 
specific time horizon are usually computed by minimizing a quadratic cost function of the form [2]: 
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In the above formulae, ( 1)u k jΔ + −  represents the control effort, 1λ  and 2λ  are weights for each 
expression component, c characterize the control horizon and the constants a and b represent the instant 
limits in which it is desirable that the output follows the reference. ( | )k j kε +  is the prediction error 

between the future trajectory ( )w k j+  and the predicted output ( | )y k j k+ . 
 
Usually the cost function J  must be minimized regarding a set of design and physical constraints. It is 
common to consider magnitude and rate constraints for the control actions and level constraints for the 
output signal. 
 
Discarding the problems associated to model fitting, the predictive control resumes the minimisation of 
a function subject to constraints. Due to the nature of this function, the controller states are obtained by 
iterative numerical procedures. These function minimisation strategies can be based in either 
deterministic or stochastic search methods. However, since the search space defined by the restricted 
cost function is, generally, very complex, non-linear and non-convex, stochastic search algorithms 
seems suitable for this application. 
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2. THE PARTICLE SWARM OPTIMISATION ALGORITHM 
 
In real-time control, any control algorithm must be fast enough to run completely between sample 
instants. In this context, the application of a given control strategy depends on the sampling frequency, 
on the computational power of the hardware and on the complexity of the control algorithm. The model 
predictive control is, by himself, a computational heavy algorithm. The computational load depends on 
several factors like the prediction horizon, the complexity of the model and the performance of the 
search algorithm. 
 
Among the fastest stochastic search algorithms is the particle swarm optimisation algorithm (PSO). 
This search strategy has a decade of existence and was firstly proposed by Kennedy and Eberhart [3]. 
Since then several works have been published on this subject concerning his mathematical proprieties, 
or application in a specific problem like greenhouse environment control [4]. 
 
Conceptually, the PSO is an algorithm based on the social behaviour of groups of organisms such as 
herds, schools and flocks. As an evolutionary technique the PSO is a population based algorithm, 
formed by a set of particles, which represent a potential solution for a given problem. Each particle 
moves through a n-dimensional search space with an associated position vector 
Xi(t)={xi1(t),xi2(t),…,xin(t)} and velocity vector Vi(t)={vi1(t),vi2(t),…,vin(t)} for the current i particle and 
evolutionary iteration t. 
 
The original PSO model integrates two types of knowledge acquisition by a particle: through it's own 
experience and from social sharing from other population members. The former was termed cognition-
only model and the latest social-only model (Kennedy, 1997). The behaviour of each particle is based 
on these two types of knowledge and their current position regarding the search. In this context, the 
behaviour of particle i in the search space is governed by the following two equations: 
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in which d represents the dimension index, nd ≤≤1 , pid(t) represents the best previous position of 
particle i in the current iteration t, pgd(t) represents the global best in the current iteration for a pre-
defined neighbourhood type. Parameter ϕ1 is known as the cognitive constant and ϕ2 as the social 
constant, that represent uniformly distributed random numbers generated in a pre-defined interval. The 
ω(t) variable represents the inertia weight and his value affects the type of search. A large ω  value will 
direct the PSO for a global search while a small ω will direct the PSO for a local search. In order to 
make a global search in the early run and more local in the end, the inertia weight can be made to vary 
linearly from a larger value to a smaller one. 
 
In each iteration the velocity of the particles is bounded by a maximum value Vmax. The value of this 
constraint is intimately connected with the maximum "jump" each particle can make. The value 
selected for Vmax should not be too high to avoid oscillations, or too low to avoid search traps. 
Additionally the particle's position should be, if necessary, relocated to a point inside the defined search 
space. 
 

2. EXPERIMENTAL SETUP 
 
In order to apply the addressed control strategy in a real physical system, a thermodynamic process was 
built. The plant is composed by a PVC tube with an inner diameter of 63 mm and a length of 60 cm. 
Additionally two actuators, a fan and a heating resistor grid, was embedded in the tube. Air is forced to 
circulate by a fan through a pipe and is heated at its inlet by the electric heater. The purpose of this 
system is to control the air temperature in a specific spot of the tube. In order to do that three 
temperature sensors have been installed. One to measure the temperature of the heating element, one to 
measure the environment temperature and the other installed at ten centimetres away from the tube 
outlet. 
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The proposed system has two degrees of freedom, i.e. it is possible to manipulate the mass of air at 
room temperature entering the tube by regulating the fan speed and the heat produced by the resistor by 
controlling the mean power applied to this element. A diagram of the building blocks of the process 
and a picture of its final aspect are illustrated in the following figures. 
 

 
 

Figure 1: Block diagram of the process to be controlled (left) and picture of the 
process's final aspect (right) 

 
The control and measured signals are manipulated in a PC compatible digital computer with a Pentium 
II processor running at 450 MHz. The communication between the plant and the computer was handled 
by a custom made ISA bus data acquisition card with an 8 bit resolution.  Due to the time constants 
involved in the process, a 1Hz sampling frequency was found suitable. 
 

3. SYSTEM MODEL 
 
Regardless of the system's two degrees of freedom, in this work the air flow rate is kept constant. 
Hence the system input is a voltage that controls the mean power applied to the heater and the output is 
the outlet air temperature. In order to use a MPC control strategy a model of the plant is required. For 
that propose, a preliminary system identification process was carried out using as an input signal a 
random in amplitude and period excitation signal. 

 
Figure 2: Open-Loop simulation of the ARX plant model under validation data. 

 
Considering that the outdoor temperature and ventilation rate is approximately constant, the model that 
has been found sufficiently accurate in order to model the dynamic behaviour of the plant was: 
 

[ ] ( ) ( ) ( )2 20.9579 1 -0.194 1 2.1684 2 0.749pipe pipeT kT T k T Heat k T Heat k T= ⋅ − ⋅ − + ⋅ − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (6) 

 
where pipeT  is the outlet air temperature, Heat  is the relative voltage applied to the phase control 
hardware that drives the heater and T  is the sampling period. As one can see, the model incorporates 
not the Heat  variable but his square. This is because the relation between the heat generated and the 
applied voltage has a quadratic proportionality as stated by the well known Jules law. Although the 
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model seems non-linear it is still linear in the parameters. Hence the values of the model coefficients 
were obtained using the least squares method. In figure 2, the open-loop simulation results for the 
proposed model under validation data are presented. 
 

4. EXPERIMENTAL RESULTS 
In the following figure, the controller performance regarding the set-point accuracy and the control 
signal of the heater is shown. 
 

 
 
Those results were accomplished using a fifty particles PSO algorithm evolved during two hundred 
generations. In this experiment the prediction horizon and the control horizon was set to ten steps ahead 
and the weight factors 1λ  and 2λ  was set to 0,6 and 0,4 respectively. 
 

5. CONCLUSION 
 
In this paper, the preliminary results of real-time control on a physical plant using the particle swarm 
optimisation algorithm have been presented. From the results obtained one is able to conclude that this 
tool has real practical use outside the simulation environment. Indeed, evolutionary algorithms great 
potential it’s their ability to evolve a set of possible solutions in a highly sophisticated multimodal 
search space with large number of discontinuities. Moreover its application in multiobjective problems 
allied to automatic decision mechanisms can be of great interest in applications outside the computer 
environment. With an obsolete computer one has shown that it is possible to use this kind of 
evolutionary search tool in practical real-time control applications. 
 
 

8. REFERENCES 
 
[1] Camacho, E. F. and Bordons, C., Model Predictive Control in the Process Industry, Springer, 

Sevilla, (1994). 
[2] Clarke, D. W., Mohtadi, C. and Tuffs, P.S., Generalized Predictive Control – Part I. The Basic 

Algorithm, Automatica, Vol 23, No 2, pp.137-148, (1987). 
[3] Kennedy, J. and Eberhart, R.C., Particle Swarm Optimization, Proc. of the 1995 IEEE Int. Conf. on 

Neural Networks, pp. 1942-1948. IEEE Service Center, Piscataway, NJ (1995). 
[4] Coelho, J. P., De Moura Oliveira, P. B and Cunha, J. B. Greenhouse Air Temperature Control using 

the Particle Swarm Optimisation Algorithm, 15th IFAC World Congress, Barcelona, Spain (2002) 
 


