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I Abstract: This paper describes two implementation approaches for modelling the air
H temperature of an automated greenhouse located in the campus of the University of

l Tras-os-Montes e Alto Douro. Linear models, based in the discretization of the heat
’L transfer physical laws, and non-linear neural networks models are used. These models are

described as functions of the outside climate and the control actions performed for

heating and cooling. Results are presented to illustrate the performance of each model in

1 the simulation and prediction of the greenhouse air temperature. The data used fo

compute the simulation models was collected with a PC-based acquisition and control

|

system using a sampling time interval of 1 minute.

Keywords: Greenhouse climate models, Neural networks, Parameter estimation,
‘ Temperature Control.

} 1. INTRODUCTION addresses two approaches to design and i
|‘ inside air temperature dynamic models. One i
| Greenhouse crop production systems requires the use on the discretization of the physical laws invo
of complex management and control tools in order to the heat fluxes between the air and comr
maximise the grower profits. Several decisions must
be performed at different hierarchical levels and time
I basis, such as crop planning and greenhouse climate
H control. Large time scales decisions, such as crop
‘ planning, are made manually, since there are The air
| [ practical limitations that makes this objective

inside the greenhouse and the heat fluxes th
place between the inside and outside air. Th
approach uses a neural network model.

temperature models simula
computed for a greenhouse located in the
campus. The greenhouse has a floor area
covered with a 200um polyethylene film.
actuators and sensors are installed and co
an acquisition and control system (Boaventus

unachievable without the grower intervention
(Challa, 1999; Van Straten er al, 2000). However,
| the aerial and root environment control can be
automated in order to achieve optimal solutions that

provide the best balance between plant growth rate
and the energy spend to regulate the climate.

In this way, proper software tools are needed to put
into practice an adequate management strategy,
namely greenhouse climate models. This paper

Couto C., and A.E.B. Ruano, 1997) using a sam
interval of 1 minute.

The results achieved with these models, tha
computed using 25 days of data (from 9 of
2 of February 1999) are presented for the simul

] -




of the air temperatures over a validation data set
from the 3™ of February to the 9" of February 1999.

In section two both the linear model derived using
'hysical laws and the non-linear neural network
‘modelling tool are described. In section three some
preliminary research results are presented and in
section four some conclusions are presented and
future work outlined.

2.GREENHOUSE AIR TEMPERATURE MODEL

21 Linear discrete model based on physical laws

The greenhouse air temperature can be described by
'eat flow equations (Boulard et al., 1993; Bot, 1991),
which are generated by the differences in energy
content between the inside and outside air and by the
gontrol or exogenous energy inputs,

1 .
2 = ——(Gins — Qo+ P) CsTT (D)

4

where: 7, is the air temperature, C,y the thermal
@pacity. i, and g, the heat inflow and outflow
and p, the energy production per unit of time, which
an oceur by plant decomposition or other processes.

in the previous equation, the transport mechanisms
nduction, convection and radiation are implicit.
instance, the heat flux from inside to outside due
ventilation and losses, o5 is described by the
bllowing equation:

. :qour,h ((Dvem Ccap nt Cc,h )'(Tag i T;mr ) (2)

C., [W.m2°C'] is the heat transfer
ent related with the greenhouse cover losses,
[I.m>.°C"] is the air heat capacity per unit of
ne air, Dyon=Clen-Uvem+Ciosses [M.87] denotes
airflow generated by the ventilation system,
ther, due to the air exchange losses between the
e and outside the greenhouse, Cyges and 7, is
coutside air temperature. The signal #,,,, denotes a
tntilation control signal that varies in the range 0 to
corresponding to delivered powers ranging from 0
1100% of the actuator nominal power.

the previous equation, C.,, has a physical

Ccap,h “Pair 'Ccap,h,p (3)

€ Coopy,=1000Jm™°C™" is the heat capacity of
at constant pressure and pa,,.=1,29kgm'3 is the
en 1ty

¢ greenhouse heat input flow, ¢, has two major
mponents, one is generated by the heating system
other by the solar radiation. The heat flow
onent of the heating system is computed by:

Ghear = CH( pipe Tag)'uheat 4)

in which Cy; [W.m™2.°C™"] is the actuator heat transfer
coefficient, Ty, is the water temperature of the
heating pipes and uj,,, is the heating control signal in
the range 0 to 1.

The short wave radiation coming from the Sun
generates the principal heating source during the day
periods. This heat flow, g4 [W. m™] is related with
the solar radiation that passes trough the cover, Rad
[W.m™], by the following equation,

Grad = CraaRad ©)

in which C,,; is a coefficient that reflects the optical
and geometrical properties of the greenhouse cover.

Besides these heat fluxes there are radiative
exchanges, long wave radiation, governed by the
Stefan-Boltzmann laws and heat fluxes between the
inside air and soil. However, since normally these
components have much lower weight than the
previous ones, they are not taken in account in the air
temperature model.

The model described in (1) was discretized using
difference equations leading to:

Grotal = Dheat (k = I) +Grad (k i 1) ~ Yout,h (k - 1) (61)

T (k) = ?*ﬂ’xnr (k=1) (6.2)

aph

in which k denotes the sample at the time A7 with T'
representing the sampling time of 60s.

Some of the model parameters are physical constants
and were obtained from the work of De Jong (1990).
The remaining parameters were computed using an
optimisation algorithm to minimise a cost function
proportional to the sum of the squared errors between
the simulated and measured temperatures using a
data estimation set from 9 of January to 2 of
February 1999. The estimated parameters and the
simulation results are showed in section 3.

2.2 Neural network model

Artificial neural networks are collections of
mathematical models that reproduce some of the
observed properties of biological nervous systems.
The key element of the ANN is the structure of the
information processing system. This system is
composed of a large number of highly interconnected
processing elements that are analogous to neurons
and are coupled together with weighted connections
that are analogous to synapses. Non-linear
autoregressive models are potentially more powerfill
than linear ones because they can model more
complex underlying characteristics of the data.
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There are a broad number of ANNs topologies.
Among the most widespread are feedforward
networks. In this paper, a multilayer perceptrons
(MLP) network, using a hyperbolic tangent as the
activation function of the hidden processing units.
These type of structures have proved to be an
universal approximator (Hornik er al., 1989). This
means that they can approximate any reasonable
function f'with a subjective accuracy given by:

f(u)=[_§:lvﬂr(ﬁ‘iwﬁ‘H;-Bj}“gj],l':l...m (7)
= i=

where: 7 is the activation function, k is the number
of hidden units, v, and w, are weights, &, are biases

and u is the data vector.

Figure 1 shows the feedforward neural network
topology used, considering as inputs the indicated
variables, a single hidden layer with four neurons
and a single output predicting the inside greenhouse
temperature one step-ahead. The activation function
for the last neuron is linear.

u  (k-1)

vent
uhea!(k. 1)
Rad(k-1)

T,ufk-1)
Fig. 1. Feedforward neural network topology used.

The non-linear function f is estimated based on

data samples using the Lavenberg-Marquardt
optimisation technique. The Lavenberg-Marquardt is
the standard method for minimization of mean
square error criteria, due to its rapid convergence
properties and robustness (Marquardt, 1963).

Weight initialisation is performed following the
Nguyen and Widrow (1990) technique and a simple
weight decay technique is used in order to force their
magnitude to small values by adding to the mean
square error expression an extra regularisation term
(Principe et al., 2000). The natural neural network
limitation, regarding the number of samples available
to train the network is not a problem in this case due
to the considerable amount of measured greenhouse
data (three weeks for training and one week for
model validation). Standard data normalization was
performed and no pre/post processing techniques
involving data filtering were used.

3. SIMULATION RESULTS

The computed parameters of the linear model
(eq. 6.2) are showed in table 1.

Table 1 Parameters of |

parameter

Caph
Cy
Crad
Ccap.h
Cr:,h
Cvenr
Cl'm.ve.v

The performances of the linear
models are presented in table 2 usi
criteria in the estimation and valida

1 X -
MSE =— 3 (T, (k)T
N]cz=]( g ag

—

in which N is the number of data s
fag denotes the simulated air temper:

Table 2 Model performances for the es
validation data periods

Model MSE
(9/1 to 2/2199)

Linear 3.74
Neural Network 1.95

Figure 2 shows the models respo
measured air temperature for 2 days
data set. From this plot it can be
dynamics of the air temperature
described. Notice that this simulati
computed in open-loop and so,
information about the real air temperz
the model.

simulated and measured temperatures.
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Fig. 2. Measured and simulated air tempe
computed for 2 days of the validation datase

In figure 3 it is possible to view the heat
computed with the linear temperature
(egs. 2, 4 and 5) for the same time period us
simulate the air temperatures in Fig. 2.
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i figure shows the variables of the outside
mate and the control signals used to compute the
fulation results for the same time period used in
eprevious figures.
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L 4. Input signals used in the air temperature
dels.

4. CONCLUSION AND FURTHER WORK

5study has drawn a comparison between a linear
del, based in physical laws, and a non-linear
il network model applied to the simulation of
air temperature inside a greenhouse. The
iminary results presented here show that the non
sive linear based physical model give worst
lis in terms of the mean square error cost
ttion used. However, with the linear model is
sible to compute the heat fluxes and explain
sically the energy exchanges that occur in this

process, which is an advantage in relation to the
black box neural network identifier used.

Some future work research points are:

1. to use other combination variables as the
neural network inputs and consider the use of
more available measurements which while
available were not used in this study, such as
the greenhouse soil temperature, relative
humidity inside and outside the greenhouse,
among others.

2. to consider the feedback of the simulated
output delayed one sample to the neural
network input.

3. to consider different models for the day and
night periods.
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