1,349 research outputs found

    Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    Get PDF
    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index (LAI) of the vegetation reached a numerical value of about 1.7 in mid-August. When the LAI is large enough (LAI > 0.2), a mean net uptake of carbon dioxide is observed with a clear daily pattern. The total evapotranspiration consists of a soil, an open water, and a plant transpiration part. When the LAI is large enough (LAI > 0.2), plant transpiration dominates the total evapotranspiration. The mean daily transpiration pattern, however, is not similar to the carbon dioxide uptake pattern. During the summer months, the daytime carbon dioxide uptake shows a single early morning maximum value followed by a decline in uptake during the rest of the day. The evapotranspiration, however, follows more or less the incoming short-wave radiation pattern. Effects of the vapour pressure deficit are suggested as a possible cause of this discrepanc

    Characterisation of High Current Density Resonant Tunneling Diodes for THz Emission Using Photoluminescence Spectroscopy

    Get PDF
    We discuss the numerical simulation of high current density InGaAs/AlAs/InP resonant tunneling diodes with a view to their optimization for application as THz emitters. We introduce a figure of merit based upon the ratio of maximum extractable THz power and the electrical power developed in the chip. The aim being to develop high efficiency emitters as output power is presently limited by catastrophic failure. A description of the interplay of key parameters follows, with constraints on strained layer epitaxy introduced. We propose an optimized structure utilizing thin barriers paired with a comparatively wide quantum well that satisfies strained layer epitaxy constraints

    Modeling of structure and vibrational spectra of aluminophosphate AlPO4 5 and its silica analog SSZ 24

    Get PDF
    In this study, the structural and vibrational properties of the AlPO4 structure AlPO4-5 and the silica structure SSZ-24 are compared. Lattice energy calcns. are done using existing potential parameter sets suitable for silicas and AlPO4's. For the computation of vibrational spectra of silica systems, force consts. derived by Etchepare et al. are used. For AlPO4 spectra simulations, a new force field is presented that is based on a fit on vibrational frequencies of a-berlinite, the AlPO4 analog of a-quartz. Lattice energy calcns. result in a symmetry of AlPO4-5 and SSZ-24 that is lower than derived exptl. A shift of layers is obsd. for both structures when a potential with partial charges is used. These results are indicative for an underestn. of the charges used in the partial charge model. The influence of structure on spectra is shown to be rather weak. The main differences between the spectra of AlPO4-5 and SSZ-24 are due to the interat. force const

    Live imaging of DORNRÖSCHEN and DORNRÖSCHEN-LIKE promoter activity reveals dynamic changes in cell identity at the microcallus surface of Arabidopsis embryonic suspensions

    Get PDF
    Key message Transgenic DRN::erGFP and DRNL::erGFP reporters access the window from explanting Arabidopsis embryos to callus formation and provide evidence for the acquisition of shoot meristem cell fates at the microcalli surface. Abstract The DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL) genes encode AP2-type transcription factors, which are activated shortly after fertilisation in the zygotic Arabidopsis embryo. We have monitored established transgenic DRN::erGFP and DRNL::erGFP reporter lines using live imaging, for expression in embryonic suspension cultures and our data show that transgenic fluorophore markers are suitable to resolve dynamic changes of cellular identity at the surface of microcalli and enable fluorescence-activated cell sorting. Although DRN::erGFP and DRNL::erGFP are both activated in surface cells, their promoter activity marks different cell identities based on real-time PCR experiments and whole transcriptome microarray data. These transcriptome analyses provide no evidence for the maintenance of embryogenic identity under callus-inducing high-auxin tissue culture conditions but are compatible with the acquisition of shoot meristem cell fates at the surface of suspension calli

    Non-destructive characterization of thin layer resonant tunnelling diodes

    Get PDF
    We present an advanced nondestructive characterization scheme for high current density AlAs/InGaAs resonant tunneling diodes pseudomorphically grown on InP substrates. We show how low-temperature photoluminescence spectroscopy (LT-PL) and high-resolution X-ray diffractometry (HR-XRD) are complementary techniques to increase the confidence of the characterized structure. The lattice-matched InGaAs is characterized and found to be of high quality. We discuss the inclusion of an undoped “copy” well (C-well) in terms of enhancements to HR-XRD and LT-PL characterization and quantify the improved precision in determining the structure. As a consequence of this enhanced precision in the determination of physical structure, the AlAs barriers and quantum well (QW) system are found to contain nonideal material interfaces. Their roughness is characterized in terms of the full width to half-maximum of the split LT-PL emission peaks, revealing a ±1 atomic sheet variance to the QW width. We show how barrier asymmetry can be detected through fitting of both optical spectra and HR-XRD rocking curves

    Fabrication, Characterisation, and Epitaxial Optimisation of MOVPE-Grown Resonant Tunnelling Diode THz Emitters

    Get PDF
    Resonant tunnelling diodes (RTDs) are a strong candidate for future wireless communications in the THz region, offering compact, room-temperature operation with Gb/s transfer rates. We employ the InGaAs/AlAs/InP material system, offering advantages due to high electron mobility, suitable band-offsets, and low resistance contacts. We describe an RTD emitter operating at 353GHz, radiating in this atmospheric transmittance window through a slot antenna. The fabrication scheme uses a dual-pass technique to achieve reproducible, very low resistivity, ohmic contacts, followed by accurate control of the etched device area. The top contact connects the device via the means of an air bridge. We then proceed to model ways to increase the resonator efficiency, in turn improving the radiative efficiency, by changing the epitaxial design. The optimization takes into account the accumulated stress limitations and realities of reactor growth. Due to the absence of useful in-situ monitoring in commercially-scalable metal-organic vapour phase epitaxy (MOVPE), we have developed a robust non-destructive epitaxial characterisation scheme to verify the quality of these mechanically shallow and atomically thin devices. A dummy copy of the active region element is grown to assist with low temperature photoluminescence spectroscopy (LTPL) characterisation. The resulting linewidths limits the number of possible solutions of quantum well (QW) width and depth pairs. In addition, the doping levels can be estimated with a sufficient degree of accuracy by measuring the Moss-Burstein shift of the bulk material. This analysis can then be combined with high resolution X-ray diffractometry (HRXRD) to increase its accuracy

    Resonant Tunnelling Diodes for Next Generation THz Systems

    Get PDF
    Resonant tunnelling diodes (RTDs) are a strong candidate for future wireless communications in the THz spectrum (sub-millimetre waves), offering compact, roomtemperature operation with the potential to exceed the bit transfer rate mandated by the 12G-SDI standard, using a single wireless link. A free-space RTD emitter operating at 353GHz is described. The fabrication process consists of a dual-pass I-line photolithography & etch technique using an air bridge, allowing low resistivity ohmic contacts, and accurate control of desired device area. With extrinsic circuit elements taken into account, the intrinsic semiconductor efficiency is analysed to investigate structural improvements for radiative efficiency. Such optimised structures are presented, and then characterised after being epitaxially grown with commercially viable metal-organic vapour phase epitaxy (MOVPE) reactors. A combination of low temperature photoluminescence spectroscopy, X-Ray diffractometry, and transmission electron microscopy attest the quality of the new material. We end with a suggestion for the next steps to exceed technological readiness levels of 8, and use monolithic RTD emitters as components in new systems

    Compositional specification of functionality and timing of manufacturing systems

    Get PDF
    In this paper, a formal modeling approach is introduced for compositional specification of both functionality and timing of manufacturing systems. Functionality aspects can be considered orthogonally to the timing. The functional aspects are specified using two abstraction levels; high-level activities and lower level actions. Design of a functionally correct controller is possible by looking only at the activity level, abstracting from the different execution orders of actions. Furthermore, the specific timing of actions is not needed. As a result, controller designcan be performed on a much smaller state space compared to an explicit model where timing and actions are present. The performance of the controller can be analyzed and optimizedby taking into account the timing characteristics. Since formal semantics are given in terms of a (max, +) state space, various existing performance analysis techniques can be used. Weillustrate the approach, including performance analysis, on an example manufacturing system
    • 

    corecore