
 Eindhoven University of Technology

MASTER

Improving the multi-item, multi-location spare parts stocking policy at PACCAR Parts Europe

Jacobs, Thomas J.P.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/350f0b0e-9253-4521-8629-f24aeec6139c


Improving the multi-item,
multi-location spare parts stocking
policy at PACCAR Parts Europe

Master Thesis

T.J.P. Jacobs

Department of Industrial Engineering & Innovation Sciences
Operation, Planning, Accounting & Control Research Group

Supervisors:

dr. ir. N.P. Dellaert, TU/e, OPAC
dr. K.H. van Donselaar, TU/e, OPAC

dr. A. Marandi, TU/e, OPAC
MSc. W.B. Bekkers, PACCAR Parts, Demand Planning

Final version

Eindhoven, June 2022



School of Industrial Engineering, TU/e
Master Theses Operations Management and Logistics

Subject headings: Spare parts, inventory management, inventory control, inventory classifica-
tion, safety stock, transshipments, aggregated service levels, order fill rate, warehouse capacity,
simulation, genetic algorithm, integer programming

ii



Abstract

This research aims to improve the multi-item, multi-warehouse spare-parts stocking policy of the
European warehouses of PACCAR Parts under capacity constraints. The problem is split up
into two parts. Firstly, a stocking/non-stocking decision is made. Based on cost approximations
for the expected PACCAR Parts fill rates (order fill rate), expected transshipment costs, and
expected inventory costs, an integer programming model is proposed that decides per warehouse
whether an item is stocked or not. In order to enable a smooth implementation of the proposed
stocking/non-stocking model for PACCAR Parts, an additional heuristic has been proposed that
is easier to implement for PACCAR Parts in the short term.
Hereafter, the optimal safety stock coverage levels are obtained via two different methods. The
first method is a safety stock heuristic that minimizes the total expected inventory costs and
obtains a minimal aggregated service level. The second method starts with proposing a new
classification algorithm for spare parts that are evaluated via the PACCAR Parts fill rate (order
fill rate). This classification algorithm classifies spare parts based on their degree of variability and
the trade-off between the increase in aggregated service level and the increase in total inventory
costs. Hereafter, a real-coded genetic algorithm determines the near-optimal safety stock coverage
levels per class. The fitness values of the chromosomes are determined by simulation. To limit
the computational time of this simulation-based real-coded genetic algorithm, efficient methods
for initializing the population and executing the genetic operators are proposed.
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Executive summary

This master’s thesis project is conducted at the Demand Planning department of PACCAR Parts
Europe in Eindhoven. PACCAR Parts Europe is responsible for the after-sales of spare parts for
DAF trucks. This executive summary overviews the most crucial research outcomes for PACCAR
Parts and its warehouse stocking policies.

Problem definition
The Demand Planning department is responsible for the inventory management of spare parts
in the European warehouses of PACCAR Parts. Their goal is to maximize the availability of
spare parts and minimize the total costs. PACCAR Parts measures this availability by using the
PACCAR Parts fill rate. This Kep Performance Indicator (KPI) can be defined as the percent-
age of order lines that can be delivered immediately from stock. It is measured per warehouse
individually and on an aggregated European level by considering transshipments. In the stocking
policy, two main decisions have to be made. Firstly, it has to be decided per warehouse whether
each item becomes stocking or not. In the current policy, this decision is made per item ware-
house individually rather than making an aggregated decision that takes into account the effects
of transshipments. Secondly, a level for the safety stock coverage in days has to be set for every
item that is stocked. In the current policy, an item is classified in one of 9 classes based on a two-
dimensional array that considers the number of order lines and Cost Of Goods Sold (COGS) in
the last rolling year. However Wingerden, van, Tan and Houtum, van (2016) proved that having
a one-dimensional demand

price -ratio outperforms a classification that is based on a two-dimensional

array. Additionally, the findings of Teunter, Babai and Syntetos (2010) suggest that there is room
for improvement in extending the number of classes. Furthermore, the current safety stock policy
does not consider any variability, which is in contrast to the literature on safety stocks ((Zipkin,
2000)). It is concluded that the current stocking policies are sub-optimal. Accordingly, the main
research question of this thesis is as follows:

How can the Demand Planning department improve the stocking policy of spare
parts at the European warehouses of PACCAR Parts

Research design
In order to answer the main research question systematically, the problem is split up into three
sub-research questions.

1. What are the (simulated) performances of the current stocking policy in terms of total costs
and availability?
In order to compare the performances of the current situation with the proposed improve-
ments, a simulation model is made. A reliable and representative simulation model is ob-
tained using empirical forecast, product, demand, and supply data.

2. How can the Demand Planning department improve the policy regarding the stocking/non-
stocking decision?
It is concluded that an item can be stocked via 92 different stocking options across the ware-
houses if transshipments are taken into account. An IP model is proposed that allocates
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one of these 92 stocking options to every item such that the total costs (inventory + trans-
shipments) are minimized, the minimum expected PACCAR Parts fill rates are respected,
and the capacity constraints of the warehouses are respected. Based on the analysis of the
results of the IP model, a stocking/non-stocking heuristic (SnoS heuristic) is proposed that
is more convenient to implement for PACCAR Parts.

3. What is the near-optimal safety stock coverage level per item per warehouse?
Two different methods are used to determine the safety stock coverage levels. The first
method is the safety stock heuristic that is described by Donselaar, van, Broekmeulen and
Kok, de (2021). The heuristic iteratively increases the SKU’s safety stock level with the
biggest increase in aggregated PACCAR Parts European fill rate relative to the increase in
total costs until a target PACCAR Parts European fill rate is met. The second method starts
by proposing a new classification algorithm based on the trade-off between the increase in
aggregated service level and increase in total costs on the one hand and total variability on the
other. Hereafter, a Real-Coded Genetic Algorithm (RCGA) is proposed that determines the
near-optimal safety stock coverage levels per category. The fitness values of the chromosomes
in the RCGA are determined utilizing simulation.

Results
The output of the IP model proposes per item per warehouse whether an item is stocking or not.
The IP does not consider items for which it is obvious to make the items stocking in all warehouses
(when more than five order hits were observed in the last rolling year in every warehouse) or non-
stocking in all warehouses (when there were no order hits observed in the last rolling year in any
of the warehouses). Consider these items as group A items. The remaining items are considered
by the IP model and referred to as group B items. Note that the PACCAR Parts European fill
rate of items in group A affects the total aggregated PACCAR Parts European fill rate of items
in groups A and B. Therefore, the IP model is executed for different scenarios of the expected
PACCAR Parts European fill rates for items in group A. Figure 1 plots the performances of the
current situation, the SnoS heuristic, and the IP solution for 2019. Note that the total costs in
this figure include transshipment costs and inventory costs. The plots are obtained by applying
the proposed stocking/non-stocking decisions in the simulation model. Note that this plot only
considers items in group B since the performances of the items in group A are the same for all
situations.

Note:The different blue dots in the graph represent the different outputs that were obtained for different scenarios
of the expected PACCAR Parts fill rates for items in group A.

Figure 1: PACCAR Parts European fill rate versus total costs for the tested stocking policies in
2019

After the stocking/non-stocking decision has been made, the two methods for determining the
safety stock coverage levels are executed and tested using the simulation model. Note that the
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simulations are based on the heuristically stocking/non-stocking decision. Figure 2 plots the
performances of the current safety stock coverage levels and the ones that are proposed by the
safety stock heuristic and the RCGA.

Note: the different blue dots in the graph represent the different outputs that were obtained for different values of
the target PACCAR Parts fill rates. These targets are a percentage of the current PACCAR Parts fill rates. From
left to right these percentages were: 99.50%, 99.75%, 100%, 100.25%, 100.50%, 100.75%, 101%, and 101.25%.

Figure 2: PACCAR Parts European fill rate versus total costs for current situation, safety stock
heuristic, and RCGA in 2019

Conclusion and recommendation
This thesis investigated how PACCAR Parts can improve its current stocking policies. It is
concluded that PACCAR Parts can improve its stocking policy in two ways:

1. Improvements regarding the stocking/non-stocking decision
The proposed stocking/non-stocking heuristic slightly outperforms the current stocking/non-
stocking decision, but the heuristic is relatively easy for PACCAR Parts to implement.
On the other hand, the proposed IP model significantly outperforms the current stocking
policy and the heuristic, but it is relatively harder to implement. Therefore, applying the
stocking/non-stocking heuristic is recommended in the short term. Nevertheless, it is recom-
mended to implement the IP model in the long term. The yearly cost savings of more than
e200,000 are considered worth implementing the complex model. In both cases, a gradual
implementation is recommended such that no unnecessary transportation costs are made
and that the PACCAR Parts European fill rate is maximized.

2. Improvements regarding the safety stock coverage levels
The proposed classification algorithm and the proposed safety stock coverage levels per
class outperform the current situation and the safety stock heuristic. For this reason, it
is recommended to implement this method to determine the safety stock coverage levels.
Additionally, the proposed method is more accessible to implement for PACCAR Parts than
the safety stock heuristic. For the proposed safety stock policy, it is recommended to test
the stocking policy on a small set of items to enable a gradual implementation.

Table 1 represents the improvements that can be obtained if the SnoS heuristic and RCGA are
implemented. The total cost improvements display the total cost improvements obtained compared
to the current situation when the same PACCAR Parts European fill rate is obtained (vice versa
for the PACCAR Parts European fill rate improvements).

2019 2020 2021
Cost improvement 5.5% 4.7% 4.4%
PACCAR Parts European fill rate improvement (in percentage point) 0.68 0.74 0.78

Table 1: Improvements in costs and PACCAR Parts European fill rate when SnoS heuristic and
RCGA are implemented
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Chapter 1

Introduction

This graduation project partially fulfills the requirements for the degree of Master of Science
in Operations Management and Logistics. The graduation project is performed at the Demand
Planning department of PACCAR Parts Parts Europe.

1.1 Report structure

This section describes the structure of this thesis. In the first chapter, an introduction to PAC-
CAR Parts and the Demand Planning Department is given. Besides, the transportation network,
stocking policy, replenishment policy, and Key Performance Indicators (KPIs) that are relevant
for this thesis project are explained. Chapter 2 describes the problem statement, validates the
problem quantitatively, and describes the research design. Hereafter, Chapter 3 explains how the
simulation model that is used in this study is substantiated. Furthermore, this chapter validates
the simulation model by comparing its outputs to those obtained in real life. Chapters 4, 6, and
7 describe the models that are used in this thesis thoroughly. After the models are implemented,
their results are displayed and analyzed in Chapter 8. Lastly, in Chapter 9, an overall conclusion
is drawn, explicit and practical recommendations for PACCAR Parts are given, a discussion of
the contribution to the scientific literature is given, and the limitations and directions for future
research are indicated.

1.2 Company context

PACCAR Parts is a division of the overarching company PACCAR. PACCAR Parts is a global
leader in the distribution, sales, and marketing of aftermarket parts for heavy and medium-duty
trucks, trailers, buses, and engines. With state-of-the-art distribution processes, award-winning
sales and marketing programs, and industry-leading quality management, PACCAR Parts provides
aftersales support to DAF, Kenworth, and Peterbilt dealers worldwide.

The European division of PACCAR Parts is responsible for the spare part availability on the
after-sales market for DAF trucks. In other words, PACCAR Parts manages the inventory of
DAF warehouses and dealers that store spare parts. This graduation project is performed at the
Demand Planning department of PACCAR Parts Europe. Among other things, this department is
responsible for the spare-part availability at 5 warehouses in Europe. The warehouses are located
in Leyland, Eindhoven, Madrid, Budapest, and Moscow. Eventually, these warehouses deliver
spare parts to DAF dealers who repair DAF trucks. Every DAF dealer is allocated to one ware-
house (see Figure 1.1). However, in case of a stock-out, the dealers can be sourced by a backup
warehouse they are not allocated to in the first instance.
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Figure 1.1: DAF dealer-warehouse allocation network in Europe

It is crucial to have high spare-part availability in the warehouses to satisfy the DAF custom-
ers. On the other hand, PACCAR Parts aims at having as low costs as possible. Hence, this
graduation project’s challenge is finding a proper trade-off between spare-parts availability and
costs. In order to achieve this, the goal of the graduation project is to optimize the stocking
policies of the European warehouses. In the next section, the PACCAR Parts Europe supply
chain is explained in more detail by considering the flow of goods. Hereafter, the current stock-
ing and replenishment strategies are discussed. At last, the KPIs that PACCAR Parts uses are
explained.

1.3 Transportation network

Figure 1.1 displays which dealer is allocated to which warehouse. This section describes the supply
chain in more detail by considering the flow of goods in the warehouse-dealer network.

1.3.1 From supplier to warehouse

Suppliers of PACCAR Parts deliver their goods to the warehouse that is located closest to their
production facility. The warehouse to which the supplier delivers the goods is responsible for the
ordering and distribution to the other warehouses. For example, consider a supplier of screws
located in the Netherlands. This supplier delivers goods to the warehouse in Eindhoven. In this
case, Eindhoven has to order items at this supplier for all of the European warehouses (see section
1.4 for more details about this). Once the goods arrive at the Eindhoven warehouse, they are
redistributed to the other warehouses.

Most of the suppliers of PACCAR Parts deliver their goods to the warehouse in Eindhoven.
Furthermore, this warehouse is centrally located in the supply chain network. For this reason,
most of the transport streams are executed via Eindhoven. Every weekday, at least one truck
travels back and forth between the warehouse in Eindhoven and every other warehouse in the
supply chain. An exception to this is the transport stream from Madrid to Eindhoven. Due to the
small number of suppliers that are allocated to the warehouse in Madrid, only three trucks a week
travel to Eindhoven. Another exception is the warehouse in Moscow. The small number of DAF
dealers in Moscow, in combination with the import/export restrictions due to political reasons,
make the transport streams from and to Moscow more complicated than the other transportation
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streams. Since the Moscow warehouse is the most miniature warehouse with a relatively small
demand share concerning the total demand, the complications are not considered worth taking
into account in this research. For this reason, it has been decided to leave this warehouse out of
the scope of this research.

In some cases, the cargo that must be transported does not fit into one truck. Then, it can
be decided to send an extra truck. This is only done if the extra truck can be filled fully. If this
is not the case, the cargo is transported the next day. The items that are delayed by one day
are always stocking items meant to increase the stock level at other warehouses. Therefore, the
single-day delays never cause stock-outs at the warehouses. Hence, no backorders are caused by
the delay, and the service rates are not affected.

PACCAR Parts assumes that the internal lead time between all the warehouses in the supply
chain, including administration, picking, and transportation, is always two weeks (i.e., 14 days).

1.3.2 From warehouse to dealer

Every day, the warehouses serve their dealers by sending the demanded order lines. An order
line contains a specific item and its demanded order quantity. If an order line cannot be fully
satisfied, it is not sent (i.e., no partial order lines are delivered). In this case, it is checked whether
transshipments can complete the order line.

In classical inventory systems, inventory streams are only possible between separated echelons.
However, inventory streams are also allowed between the same echelon when transshipments are
allowed. In this way, members of the same echelon can pool their inventories. This leads to
lower inventory costs, more flexibility, and, therefore, a higher service rate for the whole system
(Paterson, Kiesmüller, Teunter & Glazebrook, 2011). For PACCAR Parts, this implies the fol-
lowing: once an order line that a dealer places cannot be satisfied by the warehouse to which the
dealer is initially allocated, it is checked whether another warehouse can fulfill the order line. If
this is the case, there are two options:

1. A dealer placed a stocking order. This means that the dealer needs the order line to increase
their inventory level. In this case, a small delay does not affect the service level since there are
no stock-outs and thus no backorders incurred. For these orders, the item is transshipped
from one warehouse to the other via the usual transport channels. In this way, no extra
costs for the transshipment are made apart from the regular transportation and material
handling costs. It should be noted that the transshipment items are always cross-docked in
Eindhoven. For example, when a transshipment is needed from Budapest to Madrid, the
item is first sent from Budapest to Eindhoven, then from Eindhoven to Madrid. This holds
since the warehouse in Eindhoven is the biggest warehouse with the most transportation
streams to the other warehouses. Most of the suppliers deliver the goods to the Eindhoven
warehouse. For this reason, there are existing transportation streams from Eindhoven to the
other warehouses every day of the week.

2. A dealer placed a rush order. This means that the dealer needs the item as soon as possible.
This happens when a truck cannot continue driving without the ordered part. In this case,
the warehouse that has the order line on stock sends the item directly to the dealer via
the postal service company DHL. Although the aggregated service rate is not affected since
the dealer still gets his demanded items on time, extra transshipment costs are incurred
due to the postal shipment. Hence, these transshipments are considered to be emergency
transshipments with extra costs involved. More details about these costs are explained in
section 4.3.1.

If transshipments cannot satisfy the order line, the order line is backordered.
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1.4 Current replenishment policy

The warehouses use an (R, s, nQ)-policy to replenish their orders. Every night at 00:00, the In-
ventory Position (IP) at the end of the previous day is calculated. The IP can be calculated by
taking the Inventory On Hand at the end of the period (IOH), adding the Inventory on Order
(IO) to it and substracting the backorders (B) (Donselaar, van & Broekmeulen, 2014). Using
the demand forecast that the Demand Planning department makes, it is checked at every review
moment whether the forecasted demand during the lead time (L) plus review period drops below
the safety stock level. When this is the case, a replenishment order is placed. In section 1.5, the
determination of the safety stock level is explained in more detail.

A flowchart of the ordering process is summarized in Figure 1.2. The order quantity (OQ) is
based on the Economic Order Quantity (EOQ) formula that is proposed by Harris (1913). In ad-
dition to the EOQ, rules regarding Minimum Order Quantity (minOQ), Minimum Order Coverage
(mincov), Maximum Order Coverage (maxcov), and Multiple Order Quantity (MOQ) are applied.
For the minOQ, the OQ that the EOQ obtains is increased to minOQ if the OQ is smaller than
the minOQ. The same logic holds for the mincov. The mincov is displayed in days and reflects
how many days of demand should be covered minimally by the order placed. Using the demand
forecast, the mincov can be displayed in the number of items that should be ordered minimally.
The maxcov works the same but for a maximum number of days that the OQ can cover. Lastly,
the order quantity is set to a multiple of the MOQ. For this, a rounding factor of 0.85 is used.
Consider the example where the OQ equals 14, and the MOQ equals 5. In this case, the remainder
of 14/5 equals 0.8. Since 0.8 is smaller than the rounding factor of 0.85, only ten items (2×5)
instead of 15 items (3×5) are ordered. Whenever this rounding factor suggests that 0 articles
should be ordered, still the MOQ is ordered to prevent stock-outs.

Figure 1.2: Flowchart of the ordering process

1.5 Current stocking policy

The decisions that are made in the current stocking policy at PACCAR Parts Europe are sum-
marized in Figure 1.3. The stocking policy at the warehouses consists of three main decisions:

1. Firstly, it is decided whether the item is stored in the warehouse (i.e., stocking vs. non-
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stocking). This decision is based on the product price and the number of order lines (hits)
of the item in the last rolling year in the warehouse for which the decision has to be made.

2. When it is decided to stock an item, a demand forecast is made. Hereafter, a safety stock
coverage level is determined. Since the demand for many products follows a non-stationary
pattern, the safety stock is determined in days (i.e., safety stock coverage (sscov)). Similar
to the stocking/non-stocking decision, the safety stock coverage is based on the COGS and
the number of order lines (i.e., hits) in the last rolling year. An example on how sscov is
determined is displayed in Table 1.1.

3. When it is decided not to store an item locally, it can still be decided to store this item
globally at the warehouse in Budapest. This decision determines whether there are enough
order lines (hits) on a European level. It was chosen to facilitate the global storage in
Budapest since this warehouse had the most unused capacity when the stocking policy was
designed. Once it is decided to store an item globally, no forecast data on the item is
available. Therefore, a base-stock policy controls the inventory of globally stocked items.
This implies that the IP can only drop below the base stock level once actual demand occurs.

It should be noted that the used values for the parameters that are used in the stocking/non-
stocking decision are different for every warehouse. Due to the different capacity restrictions per
warehouse, the stocking decisions can be more lenient for warehouses with a higher capacity (and
vice versa).

Figure 1.3: Flowchart of decision process current stocking policy
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COGS (in euros per year)

Hits

0 - 6000 6.000 - 75.000 75.000 - 999.999
0 - 150 28 days 14 days 14 days
150 - 500 28 days 21 days 14 days
500 - 9.999 35 days 28 days 14 days

Table 1.1: Example of safety stock determination matrix for items at the warehouse in Eindhoven

1.6 Key Performance Indicators

The Demand Planning department uses several KPIs to evaluate the performance of the stocking
policy relevant to this project. This section discusses these KPIs. Note that in the traditional
literature on inventory management, order costs and shortage costs are often considered while
evaluating inventory strategies. However, the order costs are not influenced by the safety stock
policy. Besides, PACCAR Parts assumes a minimum service level should be met rather than
assuming shortage costs per missed order. Hence, order costs and shortage costs are not considered
in this research.

1.6.1 Fill rate

PACCAR Parts uses the fill rate to measure their part availability performance. The PACCAR
Parts fill rate differs somewhat from the fill rate that is defined in the traditional literature on
inventory management that is described by Nahmias and Olsen (2015) and Silver, Pyke and
Peterson and (1998). In this traditional literature, the fill rate is described as the percentage of
demand that can be delivered immediately from the stock on hand (see Equation 1.1). Using this
definition of the fill rate, it is implicitly assumed that delivering partial order lines is allowed.
However, PACCAR Parts only satisfies order lines that can be delivered fully (i.e., no partial
order lines). Recall that an order line contains a specific item and its demanded order quantity.
Thus, an order line can only be satisfied if the whole order line can be delivered fully from stock.
Therefore, the PACCAR Parts fill rate is defined as the percentage of satisfied order lines (see
Equation 1.2).

Volume fill rate =
Total satisfied demand (in units)

Total demand (in units)
(1.1)

PACCAR Parts fill rate =
Total number of satisfied order lines

Total number of order lines
(1.2)

As an illustration, consider the data in Table 1.2. In the case of the volume fill rate, 8 items of
Item A and 10 items of Item B can be delivered. Hence, the volume fill rate equals 8+10

8+12 = 0.9.
For PACCAR Parts, the order line for item B would not be delivered since the order line cannot
be satisfied fully. This means that only 1 out of the 2 order lines can be satisfied. Hence, the
PACCAR Parts fill rate equals 1

2 = 0.5

Inventory level Order line
Item A 10 8
Item B 10 12

Table 1.2: Example data for PACCAR Parts fill rate calculation

PACCAR Parts measures the PACCAR Parts fill rate on two levels. Firstly, on a regional level,
it is examined per warehouse individually what the availability performances are. Then, for each
warehouse, it is determined which percentage of the order lines placed at the warehouse can be
fully satisfied by its stock (Equation 1.3). Next to the regional fill rate that is determined per ware-
house, an overall European fill rate is determined. Eventually, this fill rate is the most important
one since it represents the performances of the whole European supply chain for which PACCAR
Parts is responsible. The European fill rate determines which percentage of total order lines can
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be satisfied fully by any of the European warehouses (Equation 1.4). Note that the European fill
rate considers order lines that are satisfied via (emergency) transshipments as satisfied order lines.

PACCAR Parts regional fill rate =
Total number of fully satisfied order lines by warehouse stock

Total number of order lines placed at the warehouse
(1.3)

PACCAR Parts European fill rate =
Total number of fully satisfied order lines in Europe

Total number of order lines placed in Europe
(1.4)

1.6.2 Total costs

The total costs that depend on the stocking policy consist of three components:

1. The inventory costs for an item depends on its sum of Material, Labor, and Overhead
costs (MLO). The MLO is different for every item and depends on item properties such as
purchasing price and volume. Eventually, the inventory value for an item at any moment
in time is determined by multiplying its MLO with the IOH. In this way, the inventory
values per warehouse individually can be calculated. The total European inventory value
can be determined by summing these individual warehouse inventory values. PACCAR Parts
assumes its inventory costs to be 12% of its inventory value per year.

2. The regular transshipment costs are determined based on the volume of an item. The
trucks that drive between the warehouses have a fixed cost and a particular capacity in terms
of volume. Since only full truckloads are used, it is assumed that the regular transshipment
costs per item are proportionally distributed to its volume. Additionally, a fixed price per
transshipment is assumed to include the warehouse’s administration and order handling
costs.

3. The emergency transshipment costs are determined based on the weight of an item.
This holds since an external postal service takes care of the emergency transshipments. They
calculate the costs based on the weight of an item. Again, a fixed price per transshipment
is assumed to cover the warehouse’s administration and material handling costs.

The three cost components that are briefly explained here are elaborated on further in section 4.3
of this thesis.
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Chapter 2

Problem definition

The first step in the regulative problem solving cycle that is proposed by Aken van (2005) is
to form a proper problem definition. This chapter provides the problem definition, including a
problem statement, a description of the research scope, and research questions.

2.1 Problem setting

2.1.1 Problem context

In 2015, PACCAR Parts introduced a new planning system called JDA. JDA is responsible for
all the inventory planning tasks involved in the operations of PACCAR Parts. Forecasting and
replenishing are the most critical tasks for the Demand Planning department. JDA is initially
developed for retail operations. Retail operations’ characteristics differ from those of spare parts
management at PACCAR. For many spare parts, demand is often relatively low and highly fluctu-
ating. This makes it hard to fit distributions and forecasts the demand (Mo, Wang, Ho & Leung,
2022; Syntetos, Babai & Altay, 2012; Topan & Heijden, van der, 2020). In retail operations,
products with low demand are often eliminated from the product portfolio. For this reason, JDA
is not specialized in handling low-demand items. Moreover, JDA is a planning system rather than
an inventory control system. Consequently, the initial stocking policies that were integrated into
the JDA software were assumed to be too simplistic and, therefore, unsuitable for the operations at
PACCAR Parts. As a result, PACCAR Parts designed and implemented the new stocking policy
that is described in section 1.5. The stocking policy was designed to be easy to implement in the
JDA software. Since the implementation of the new stocking policy in JDA, manual adjustments
to individual safety stock settings have been made for items that perform poorly. As a result, the
Demand Planning department believes that the stocking policy is not robust and sub-optimal in
obtaining a proper trade-off between costs and service level.

2.2 Problem statement

The stocking policy’s first step is determining whether an item is stocking or non/stocking. Cur-
rently, the stocking/non-stocking decision per warehouse is based on the number of hits in the
specific warehouse in the in the last rolling year. For example, in the warehouse in Madrid, an
article is set to stocking once it had at least three hits in the last rolling year. Some warehouses
have an additional criterion that considers an article’s price. For example, in the warehouse in
Eindhoven, an article is considered to be stocking once it had at least three hits in the last rolling
year and the price of the article is below 15 Euros. If the item is more expensive than 15 Euros,
the article needs at least six hits in the last rolling year before it is considered to be stocking.
This additional criterion is not used for every warehouse. Moreover, the minimum number of hits
can differ per warehouse. The reason for these differences is related to capacity restrictions. The
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tighter the capacity in a warehouse is, the tighter its criteria are and vice versa. For this reason,
the capacity restrictions are taken into account in this research.

Additionally, there is the option of global storage. Whenever a particular item is not stored
in any of the warehouses, it is checked whether there were enough hits in the last rolling year on
a European level. In this case, the item is stored globally in Budapest (see section 1.5). Note
that the current stocking/non-stocking policy, in combination with the replenishment policy that
is described in section 1.4 can lead to the following situation: A particular item had two hits in
Madrid and two hits in Leyland in the last rolling year, in Eindhoven and Budapest there were
zero hits. Based on the stocking/non-stocking policy, the item is not stored locally in any ware-
houses but globally in Budapest. If the supplier of this item delivers to the Eindhoven warehouse
and has a high minimum/multiple order quantity, the warehouse in Eindhoven has to order more
than is needed to stock the warehouse in Budapest. In this case, there could be inventory for
the specific item in Eindhoven and Budapest, while there is no inventory in Leyland and Madrid.
This situation is considered to be inefficient since unnecessary transportation costs are made.

After the stocking/non-stocking decision is made, the safety stock coverage has to be determ-
ined. Safety stock is meant to cover variation at the supply and demand side (Zipkin, 2000).
Currently, the safety stock policy does not consider any variation characteristics. It is based on
the number of expected order lines to increase the PACCAR Parts fill rate on the one hand and
the COGS to decrease the inventory costs on the other. However, no demand or supply variation
characteristics are taken into account. Furthermore, Wingerden, van et al. (2016) prove in their
research that classifying inventory based on a one-dimensional demand

price -ratio outperforms the situ-
ation in which inventory is classified based on demand and price in a two-dimensional way in terms
of inventory costs and service level. As has been explained in section 1.5, PACCAR Parts uses
a two-dimensional method to classify the spare parts. It can be concluded that PACCAR Parts’
current safety stock policy is not in line with the findings of Wingerden, van et al. (2016). Addi-
tionally, Teunter et al. (2010) show in their research that increasing the number of classification
classes significantly impacts the performance of the policy in a positive way. Considering the large
boundaries that PACCAR Parts uses (see table 1.1), there is room for improvement in expanding
the size of this 9-grid.

The most important KPIs for the Planning Department are the PACCAR Parts European fill
rate (Equation 1.4) and the total inventory costs. In the case of transshipments, additional costs
incur that are not taken into account currently. In other words, the effects of transshipments are
not considered explicitly in the current stocking policy. However, they influence the costs of the
entire PACCAR Parts supply chain. Since the stocking policy directly affects the number of trans-
shipments that take place, this research takes into account the costs that are involved regarding
the transshipments.

Lastly, it is assumed that the internal lead times between the warehouses are always equal to
exactly 14 days. The extent to which this assumption is valid is questionable. The processes
regarding the administration and picking of the order lines for other warehouses differ across the
warehouses. This is mainly due to the differences in size and work capacities of the warehouses.
Moreover, the transportation times are different between all nodes in the supply chain network.
This results in underestimation or overestimation of the actual lead times (see section 2.3 for the
quantitative substantiation of this statement). Since the ordering policy suggests that an order
is placed such that the demand during the expected lead time plus review period is covered, an
incorrect lead time assumption leads to an incorrect order suggestion. When the lead time is
overestimated, too much inventory is ordered, which increases the inventory costs and PACCAR
Parts fill rate. This obstructs the design of an accurate stocking policy.
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2.3 Problem validation

In order to validate that the described problem is indeed a problem, an initial data analysis has
been performed. The PACCAR Parts fill rates (Figure 2.1) and warehouse inventory values (Fig-
ure 2.2) over the past five years have been visualized. Note that some less historical inventory
value data is available compared to the historical PACCAR Parts fill rates data. Nevertheless, the
limits of the x-axis are displayed on the same interval to enable a proper comparison between the
two.

Figure 2.1: PACCAR Parts fill rates over the past five years

The on-time serving of customers is considered to be crucial for PACCAR Parts. Therefore, a
relatively high target European fill rate of 98.3% is desired. From Figure 2.1, it can be derived
that this target PACCAR Parts European fill rate is not satisfied most of the time. Therefore, it
can be concluded that the described problem is valid. Around March 2020, steep decreases in the
PACCAR Parts fill rates are observed. These decreases were caused by the supplier disruptions
involved with the incipient COVID-19 pandemic. Around the start of 2021, the PACCAR Parts
European fill rate decreased even more due to the worldwide microchip shortage in combination
with the bullwhip effect caused by the COVID-19 uncertainties.

2019 2020 2021
Average actual lead time (days) 48.91 50.93 53.13
Average standard deviation of actual lead times (days) 5.56 6.81 9.21

Table 2.1: Actual supplier lead times per year

Some interesting conclusions can be drawn by comparing the inventory values with the observa-
tions made from Figure 2.1. From 2017 until approximately 2020, the intuitive positive relationship
between inventory value and PACCAR Parts fill rates can be observed. The small peak in invent-
ory value around March 2020 reflects PACCAR Parts’s response to the COVID-19 uncertainties.
In order to deal with the uncertainties, the inventory levels were increased. Since more customers
of the suppliers did this, a bullwhip effect on the supplier side was created. This bullwhip effect
on the supply side caused high supply uncertainties. This, in combination with supply disruptions
regarding the worldwide chip shortage, caused a decreased service level while the inventory value
increased. From this, it can be concluded that in the last two years, the supply disruptions caused
most problems for PACCAR Parts.
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Figure 2.2: Inventory values over the past five years

As has been stated earlier, it can be decided to stock items globally in Budapest based on the ag-
gregated demand in the last rolling year. Due to this policy, items can be stored in Budapest while
there were no order hits in the last rolling year in the warehouse in Budapest itself. Therefore,
table 2.2 validates that the mentioned case is not an exception. More than 60% of the globally
stocked items in Budapest did not have any demand in Budapest itself the previous year.

2019 2020 2021
#Items that were global stocking in Budapest 4035 4317 4138
#Items that had 0 demand in Budapest in the last rolling year 3087 3285 2481
%Global stocking items with 0 demand in Budapest in the last rolling year 76.5 76.1 61.5

Table 2.2: Global stocking in Budapest

Table 2.3 displays the actual average lead times between the warehouses. Note that the expec-
ted inter-warehouse lead time in the current ordering system is always assumed to be equal to
14 days. It can be concluded that this assumption is invalid in most cases. Recall that most
suppliers deliver their goods to the warehouse in Eindhoven. From the table, it can be derived
that the average actual lead times from Eindhoven to the other warehouses is lower than 14 days.
This means that in most cases, the order suggestion on the number of goods ordered from the
Eindhoven warehouse is overestimated.

To
Eindhoven Madrid Leyland Budapest

From

Eindhoven N/A 11.1 12.5 12.3
Madrid 13.1 N/A 14.3 15.3
Leyland 13.4 11.2 N/A 17.1
Budapest 9.3 12.5 14.5 N/A

Table 2.3: Average actual lead times between warehouses in days

2.4 Research design

2.4.1 Scope

This thesis aims at improving the stocking policies of the European warehouses that the demand
Planning Department of PACCAR Parts is responsible for. These warehouses include Eindhoven,
Leyland, Budapest, Madrid, and Moscow. Nonetheless, the warehouse in Moscow differs from
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the regular operations at PACCAR Parts due to Russia’s legal export and import restrictions.
This limits the transshipment possibilities that Moscow has. Furthermore, the supply process of
the warehouse in Moscow is somewhat more complex than the others. On the other hand, the
warehouse share of Moscow in terms of PACCAR Parts European fill rate and inventory costs is
relatively low compared to the other warehouses. The extra complexity involved when the ware-
house in Moscow would be included in this research does not outweigh its benefits in terms of
an increase in aggregated PACCAR Parts European fill rate and total inventory costs. Hence,
it is decided to exclude the warehouse in Moscow from this study and thus only consider the
warehouses in Eindhoven (EIN), Budapest (BUD), Leyland (LEY), and Madrid (MAD).

Forecasting is considered to be a crucial element of the stocking policy (see Figure 1.3). During
the execution of this research at PACCAR, additional research is performed by another researcher
focusing on improving the forecasting methods. Therefore, it is decided to exclude forecasting
from this research. Conclusively, the scope of this research is primarily focused on determining
the safety stock coverage per item per warehouse. This safety stock coverage should be set in such
a way that the important KPIs for PACCAR Pars are improved. These KPIs include European
fill rate (Equation 1.4), Regional fill rate (Equation 1.3), and total costs. These costs consist of
inventory costs and transshipment costs. PACCAR Parts considers the inventory costs to be 12%
of the inventory value per year.

2.4.2 Research questions

Based on the problem statement and scope definition of this research, the main research question
can be formulated as follows:

How can the Demand Planning department improve the stocking policy of spare
parts at the European warehouses of PACCAR Parts?

As mentioned, the improvements are examined by considering the European fill rate, Regional
fill rate, and total costs. To answer the main research question systematically, it is split up into 3
sub-research questions that are discussed below.

1. What is the (simulated) performance of the current stocking policy in terms of total costs
and availability?
In order to examine the value of potential improvements for the current stocking policy, the cur-
rent stocking policy needs to be evaluated. In this way, a fair comparison between the potential
improvements and the current situation is enabled. PACCAR Parts keeps track of some of the
KPIs that are considered in this research (PACCAR Parts fill rates and inventory costs). This
actual KPI data can be used to validate the simulation model.

2. How can the Demand Planning department improve the policy regarding the stocking/non-
stocking decision?
As shown in Figure 1.3, the first decision in the stocking policy that needs to be made is whether
or not to stock an item (stocking vs. non-stocking). Eventually, it is the goal to determine per
item per warehouse whether the item should be stocked or not.

3. What is the near-optimal safety stock coverage level per item per warehouse?
After the stocking/non-stocking decision is made, the near-optimal safety stock coverage per item
that is stocked needs to be determined. Intuitively, there is a positive relationship between in-
ventory costs and PACCAR Parts fill rate. For this reason, it is desired to provide a set of
Pareto-optimal solutions to answer this sub-research question. This can be done by minimizing
the total costs constrained to several values for the PACCAR Parts fill rates.

12
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2.5 Research methods

The research design and proposed research methods are displayed in Figure 2.3. Firstly, a simula-
tion model is made to evaluate the performances of the current stocking and safety stock policies.
Secondly, to improve the stocking/non-stocking decision, an Integer Programming (IP) model is
proposed that makes a stocking decision such that total costs are minimized, warehouse capacity
restrictions are met, and minimum PACCAR Parts fill rates are met. Since implementing the pro-
posed IP model into the planning systems of PACCAR Parts is complex, a Stocking/non-Stocking
(SnoS) heuristic is developed based on the outcomes of the IP model. The outcomes of the IP
model and the SnoS heuristic are tested in isolation from the proposed improvements regarding
the safety stock settings via the simulation model. Thirdly, using the stocking/non-stocking de-
cision made via the SnoS heuristic, the heuristic proposed by Donselaar, van et al. (2021) is used
to calculate the optimal safety stock levels. Again, these safety stock settings are tested via the
simulation model. Lastly, a Genetic Algorithm (GA) is proposed that determines the near-optimal
safety stock coverage levels for each class that is distinguished via a pre-defined classification al-
gorithm. Also, for the GA, the SnoS heuristic is used to make the stocking/non-stocking decision.
The safety stock heuristic can be used to compare and validate the results of the GA. Also, for
the GA, the simulation model is used to calculate the fitness values.

Figure 2.3: Research design and methods

2.6 Theoretical contribution

The problem studied in this thesis is a multi-item, single-echelon, multi-location spare parts invent-
ory model with transshipments and warehouse capacity restrictions. The problem is considered
multi-item since it aims to optimize an aggregated service level, single-echelon since only one ech-
elon is reviewed, and multi-location since multiple warehouses that can facilitate transshipments
are studied.

Firstly, a stocking/non-stocking decision is proposed in this thesis. In most of the multi-item,
single-location problems in a spare parts environment, ABC classification is used to determine
whether a certain part is stocking or non-stocking (Silver et al., 1998; Nahmias & Olsen, 2015).
The intuition behind this approach is that a fair trade-off is enabled between inventory costs and
aggregate service level. However, it is complex to make this trade-off in a multi-location case.
This holds since the implication of transshipment changes the aggregate service level and total
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costs (i.e., a higher service level can be obtained at fewer costs). The literature available on the
stocking/non-stocking decision for multi-item, multi-location problems is limited. Wong, Hou-
tum, van, Cattrysse and Oudheusden, van den (2005) and Archibald, Sassen and Thomas (1997)
both propose a multi-item, multi-location policy. Both papers conclude that optimally solving the
problem is infeasible for large problem instances due to the computational time. These studies use
Lagrangian-based heuristics with the assumption of a demand process that is Poisson distributed.
For spare parts, the latter assumption is often invalid (Mo et al., 2022). Furthermore, these papers
do not consider the warehouse capacity restrictions present at PACCAR Parts.

Most of the transshipment inventory models in the literature that study transshipments are single-
item. Service levels for a single item are optimized, which decreases the complexity of the problem
compared to a multi-item situation (Paterson et al., 2011). Papers that consider multi-item op-
timization models are often focused on finding the optimal number of transshipments rather than
the optimization decisions regarding stocking/non-stocking and the optimal safety stock level (Mo
et al., 2022; Topan & Heijden, van der, 2020; Patriarca, Costantino & Di Gravio, 2016). Be-
sides, most multi-item models focus on a small number of items compared to the number of items
that need to be considered in the spare-parts environment at PACCAR Parts. The complexity of
the problem at PACCAR Parts is related to the enormous number of spare parts in the product
portfolio that can potentially be stored in each location (over 100,000). Compare this to the five
items that are considered by Paterson, Teunter and Glazebrook (2012) or the three items that are
considered by Patriarca et al. (2016) in their multi-location inventory models with transshipments.

Transshipment inventory models are often based on known demand distribution which enables
the derivation of analytical models accordingly (Boucherie, Houtum, van, Timmer & Ommeren,
van, 2018; Garćıa-Benito & Mart́ın-Peña, 2020; Chen & Lu, 2011; Feng, Moon & Ryu, 2017; H. Li
& Jiang, 2012; Z. Li, Li & Xu, 2019; Nakandala, Lau & Ning, 2016; Nakandala, Lau & Zhang,
2017; Nakandala, Lau, Zhang & Gunasekaran, 2018; Yu, Zhou & Zhang, 2020; Zelibe & Bassey,
2021; Gholamian & Nasri, 2019). Analytically optimizing the transshipment inventory models
is only possible for relatively small cases with a few items or one or two echelons (Paterson et
al., 2011). When multiple items or echelons are considered, optimizing the models analytically
becomes impossible due to the increased complexity. Simulation-based optimization techniques
are used in these situations to optimize the problem (Cesarelli, Scala, Vecchione, Ponsiglione &
Guizzi, 2021; Gholamian & Nasri, 2019; Gu, Zhou & Zhang, 2020; Hochmuth & Köchel, 2012;
Meissner & Senicheva, 2018; Purnomo, 2011; Ri-Hong, Peng-Cheng, Jiang-Sheng & Cheng-Ying,
2012). Nevertheless, these models rely on known demand distributions that assume stationary
demand. In spare parts inventory management, the demand distribution is often unknown due to
the intermittent demand for several items (Paterson et al., 2011; Mo et al., 2022). Additionally,
many items at PACCAR Parts follow a seasonal pattern which contradicts the assumption of
stationary demand.

To summarize, the complexity of the problem at PACCAR Parts is related to an aggregate ser-
vice level that needs to be optimized across a large number of spare parts and multiple locations
with a limited capacity. Therefore, it can be concluded that this research fills the gap of stocking
policy optimization in a multi-item, single-echelon, multi-location spare parts inventory model
with transshipments and warehouse capacity restrictions.
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Simulation model

A simulation model is needed for all of the research questions that are defined. In Figure 3.1, a
schematic representation of the simulation model is given. Using the proposed simulation model,
performances of the important KPIs that are given as output can be simulated for different values
of the safety stock coverage per item per warehouse.

Figure 3.1: Simulation model

3.1 Input data

The purpose of safety stock is to deal with variations in the demand and supply of items (Zipkin,
2000). In order to create a reliable simulation model, the input data has to simulate the real-life
variation as correctly as possible. This section describes the input data for the simulation that
enables the proper representation of reality.

3.1.1 Product data

The actual product data that is needed to calculate the costs, simulate the ordering process, and
simulate the stocking policy are used (see sections 1.4 and 1.5). Additionally, some products were
removed from the product data set. As has been explained in section 2.4.1, the warehouse in
Moscow is not considered in this research. There are some products for which Moscow serves
as the supplying warehouse. These products are excluded from the data set. Additionally, some
products in the data set are not sold any more because other products in the product portfolio
replace them. In the data, it is not retrievable from which moment onward these products were
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not available for the dealers to order anymore. Therefore, these products are also excluded from
the research. These products are also excluded from the demand, forecast, and supplier reliability
data sets.

3.1.2 Forecast data

Since forecasting is out of the scope of this research project, the historical forecasts that the
Demand Planning department made are used. The Demand Planning department makes a forecast
for every 4-week period. In this way, they can adopt the seasonal patterns available in the data.
Approximately 25% of the items are forecasted according to a seasonal forecasting method. In
section 1.5, it has been explained that forecasts are only made for articles that were stocked locally
in the warehouses. No forecasts were needed for globally stocked, and non-stocking items since
these items were not ordered based on a forecast. Nevertheless, the forecasts of all items are
considered in this research. The items that do not have a forecast are items with relatively low
demand. Whenever the Demand Planning department makes a forecast for items with relatively
low demand, simple exponential smoothing with a smoothing constant of 0.1 is used. In order to
make a forecast for all items, the simple exponential smoothing method is applied to all the items
that did not have a forecast yet.

3.1.3 Demand data

Due to the seasonality involved in the demand data, it is invalid to assume stationary demand
patterns. Moreover, fitting a distribution on items with only a few demand hits per year is
inaccurate. Hence, empirical data is used to simulate the demand. For every 4-week period,
two empirical distributions per SKU are derived. One empirical distribution represents the daily
number of order lines. The other empirical distribution represents the order size. The 4-week
periods for which the empirical distributions are derived match the periods for which the forecasts
are made. This way, the historical forecast data can be used, and the seasonal patterns are
considered. For every day in the simulation horizon, the empirical daily order line distribution
is used to simulate the number of orders that comes in. Whenever an order is generated, the
empirical order size distribution is used to simulate the size of the order.

3.1.4 Supplier reliability

For every order that has been placed at the supplier, the Demand Planning department keeps
track of the delivery time. With this data, an empirical distribution of the actual lead time per
item can be derived. This empirical supplier reliability data is used to simulate the variation at
the supply side. As has been concluded in section 2.3, the supplier reliability is time-dependent.
Based on the conclusions that were drawn in section 2.3, three scenarios can be distinguished:

1. The period before COVID-19 (i.e., up until 2019). In this period, the supplier reliability was
relatively stable, and no extreme outliers in the actual supplier lead times were observed.

2. The first year of COVID-19 (i.e., 2020). This year, the first COVID-19 lock-downs were
announced, which eventually resulted in a high level of supply uncertainty.

3. The period with the remaining effects of COVID-19 in combination with the chip shortage
(i.e., 2021). This year, the chip shortage occurred, causing even more supply problems.

For this reason, three empirical supplier reliability functions are derived that can be tested. In
the simulation, every time an order is placed, a random observation of the actual lead time per
SKU is picked out of the historical data per period. This way, the supply side variation is adopted
into the simulation model. The main goal of this research is to develop a stocking policy that is
suitable for the situation with relatively stable supplier reliability (scenario 1). Nevertheless, the
solution will be tested in scenarios 2 and 3 to examine the robustness of the model concerning
situations with extreme supply reliability outliers.

16



CHAPTER 3. SIMULATION MODEL

Recall that the lead times between the warehouses are also variable. Therefore, the empirical
lead time data between the warehouses are also used to simulate the variability in the lead time
between the warehouses. These actual inter-warehouse lead times are drawn randomly in the same
manner as is described above for the actual supplier lead times.

3.2 Simulation

3.2.1 Generic process

For every day in the simulation, the same process is executed. To start with, the items that another
warehouse supplies are considered. For each of these items, the desired Order Quantity (OQ) is
ordered at the supplying warehouse by applying the replenishment policy that is explained in
section 1.4. Once this is done for all warehouses, it is checked at the supplying warehouse whether
it can satisfy all of the orders that are placed by the other warehouses. A supplying warehouse
can only send the number of items from a specific part left from the IP after subtracting the safety
stock and forecasted demand until the next potential delivery moment. Whenever this amount is
not enough to satisfy all orders from the other warehouses fully, the warehouses are served partly
based on their relative share in the total forecasted demand until the next potential delivery
moment. Hereafter, the warehouses that order their items with the external suppliers place their
orders. After all of the orders are placed, the outstanding backorders from dealer demands are
considered. Firstly, it is checked whether the warehouse at which the order is placed initially can
deliver the backorders. Hereafter, it is checked whether the backorders can be satisfied by one of
the other warehouses. Every warehouse has a fixed sequence representing the order in which the
other warehouses’ inventories are checked (Table 3.1). Lastly, the daily demand is checked the
same way as the backorders. After all of the days are simulated, the total costs and PACCAR
Parts fill rates are computed. In Appendix A, the high-level flowchart is displayed of the used
simulation model.

1 2 3
Eindhoven Leyland Budapest Madrid
Madrid Eindhoven Leyland Budapest
Leyland Eindhoven Budapest Madrid
Budapest Eindhoven Leyland Madrid

Table 3.1: Sequence of transshipment opportunities per warehouse

3.2.2 Starting values

It is desired to set the starting values in combination with the warm-up period to obtain a stable
system. On the other hand, it is also desired to minimize the warm-up period since this increases
the computational time of the simulation. Especially when executing the GA described in Chapter
7, it is crucial to minimize the computational time for the simulation. This holds since the simu-
lation model is used to calculate the fitness values in the GA.

The starting values for the IOH , IT , and B are set to 0 for each SKU at the beginning of the
simulation. Then, the warm-up period for each SKU is defined. The warm-up period is assumed
to be equal to the item’s lead time plus an additional 30 days to warm up. The lead time accounts
for the filling of the inventory pipeline of each SKU. The additional 30 days account for the sta-
bilization of the system. Note that for SKUs that another warehouse supplies, the lead time used
here is equal to the lead time of the supplying warehouse plus the lead time between the supplying
and receiving warehouse. In this way, the inventory pipeline between the supplier and supplying
warehouse is also filled correctly. After the warm-up period, stable starting values are obtained.
Using these values, a simulation time of a full year is run to calculate the KPIs. By considering a
full year of simulation, the seasonal patterns are adopted equally.
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3.2.3 Simulation versus reality

There are two crucial differences between the input data that is used in the simulation, and the
data was used in real life:

1. At PACCAR Parts, so-called templates are used to increase safety stock for parts that
perform poorly. A template reflects an extra safety-stock coverage that is added to the safety-
stock coverage obtained by applying the heuristic explained in section 1.5. For example, when
a supplier delivers its goods often too late, a template can be added to the products that
this supplier delivers. These templates are temporary and can only be positive. Consider
the example of the poorly performing supplier. PACCAR Parts will try to find a solution to
prevent from having over time deliveries by the supplier. Once these problems are solved, the
templates are removed. Only data is available on the templates that are applied currently
(i.e., no historical template data). For this reason, it is chosen to simulate one situation with
the current templates and one without the current templates. Table 3.2 displays the impact
of the templates.

SKUs that had at least one demand hit in 2019, 2020, or 2021 146466
Number of these SKUs on which a template is applied currently 41574
% of SKUs with demand in 2019, 2020, or 2021 with a template 28.38

Table 3.2: SKUs with templates

2. Besides the templates, manual adjustments are made to the inventory of certain parts.
Extra inventory is ordered by the inventory planners of PACCAR Parts based on practical
knowledge. For example, when the United Kingdom left the European Union (Brexit), it was
chosen to increase the inventory for items in Leyland and the inventory for items that the
warehouse in Leyland was supplying. This was done to anticipate import/export restrictions.
There is also no historical data on these events, implying that they cannot be simulated.

It can be concluded that there are inevitably differences between the actual performances and the
simulated performances due to the use of templates and manual adjustments. Nonetheless, it is still
decided to use the simulation model since it properly tests the proposed stocking policies according
to the simulation validation that is explained in more detail in Appendix B. This validation
concludes that the current templates are not representative and applicable to the older data sets.
Therefore, the templates are not considered in the rest of this study.

3.3 Current performance

The simulated performances regarding the PACCAR Parts fill rates that the simulation model
obtains are displayed in Table 3.3. Additionally, the total yearly costs are obtained using the
simulation model (see Table 3.4). These costs include the inventory costs, which are assumed to
be 12% of the average inventory value per year. Furthermore, the transshipment costs of regular
and rush orders are calculated based on the transshipped product and its volume or weight,
respectively (see section 1.6.2). Additionally, Table 3.5 display the demand characteristics for the
periods that are simulated. The intuitive positive effect between the total costs and sales turnover
can be observed from the tables. Furthermore, it can be observed that it is worthwhile to take
into account the transshipment costs. Namely, they account for more than 30% of the total costs.
Besides, a higher inventory level reduces the transshipment costs. This can be observed for all
years when comparing the simulation including templates with the situation excluding templates.
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2019 2020 2021
Actual Simulation Actual Simulation Actual Simulation

Inc. T Exc. T Inc. T Exc. T Inc. T Exc. T
European 0.987 0.973 0.966 0.985 0.972 0.962 0.962 0.964 0.949
Eindhoven 0.970 0.955 0.942 0.962 0.952 0.937 0.970 0.938 0.918
Madrid 0.940 0.936 0.915 0.932 0.934 0.908 0.935 0.924 0.894
Leyland 0.966 0.953 0.935 0.950 0.950 0.929 0.921 0.943 0.914
Budapest 0.944 0.958 0.943 0.943 0.953 0.933 0.905 0.939 0.916

Inc. T: including templates. Exc. T: excluding templates

Table 3.3: PACCAR Parts fill rates in current situation

2019 2020 2021
Inc. T Exc. T Inc. T Exc. T Inc. T Exc. T

Inventory costs 6722 5597 8137 5488 8204 6772
Transshipment costs rush order 1509 1853 1243 1615 2078 2548
Transshipment costs regular orders 460 655 464 665 638 860
Total 8691 8105 9844 7768 10920 10180

Inc. T: including templates, Exc. T: excluding templates

Table 3.4: Total yearly costs simulation (in thousands of euros)

Order lines
(per thousand)

Quantity
(in thousands)

Turnover
(in thousands e)

2019 2020 2021 2019 2020 2021 2019 2020 2021
European 26419 25408 27981 274993 246535 288669 27308 26237 33919
Eindhoven 10566 10074 10945 129004 116805 135719 13327 13093 17380
Madrid 2194 2172 2405 15953 14889 16500 1274 1308 1546
Leyland 9092 8801 9820 82891 72169 85121 8000 7338 8987
Budapest 4566 4362 4812 47144 42672 51330 4707 4498 6007

Table 3.5: Demand characteristics
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Stocking/non-stocking IP model

The first decision that needs to be made in the stocking policy deals with the stocking/non-stocking
decision. This chapter describes the model that is proposed for making this decision.

4.1 ABC classification

In spare parts inventory management, many companies use an ABC classification to decide whether
an item is stocking or non/stocking (Wingerden, van et al., 2016). When applying ABC classifica-
tion, parts are categorized across the three categories ‘A’, ‘B’, and ‘C’. Class A parts are considered
to be the most important parts receiving the closest attention, while class C parts are considered
to be the least important ones (Teunter et al., 2010). Part B parts are the remaining articles. By
categorizing spare parts in such a way, companies can differentiate between different SKUs while
having a simple policy for all spare parts (Wingerden, van et al., 2016). There have been extensive
studies on how to classify spare parts. Wingerden, van et al. (2016) conclude that there are three
main classification criteria that are often used. The first classification criterion that is often used
is the Annual Dollar Volume (ADV). The ADV is a one-dimensional criterion representing the
demand rate multiplied by its price. The second classification criterion is also one-dimensional
and considers a rate equal to the demand divided by the price. The last classification criterion is
two-dimensional and classifies the articles based on price and demand. PACCAR Parts’s current
stocking policy is an example of this classification (Table 1.1). These three classifications aim to
make a proper trade-off between service level and inventory costs. Parts with a high demand con-
tribute relatively more to the aggregated service level, while relatively expensive parts contribute
relatively more to the inventory costs. Ideally, it is desired to stock items with high demand and
low prices. However, these classification criteria do not consider the effect of transshipments and
capacity restrictions present at PACCAR Parts. Hence, an algorithm is proposed for a multi-item,
multi-location stocking problem with transshipments and capacity restrictions.

With the philosophy of the ABC classification in mind, an algorithm is proposed that is based on
the historical demand data. The algorithm uses historical data from the last rolling year to make
decisions for the current year. This one-year interval is chosen so that the newest sales trends
are considered and no outdated data is used. Additionally, choosing an interval that captures a
full year prevents the occurrence of seasonal biases. The proposed algorithm consists of two main
steps. In the first step, an initial classification is made that is similar to the ABC categorization in
the sense that three main categories are proposed based on the number of sales in the last rolling
year. The categorization that is used in this algorithm is summarized in Figure 4.1. Additionally,
to get an impression of the distribution of the number of parts per category, Table 4.1 displays
the number of parts per category for 2018, 2019, and 2020. Note that the table only displays the
parts that can still be ordered by the dealers (i.e., active parts).
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Firstly, parts that did not have any demand in the four warehouses are filtered out. These
parts are set to non-stocking in every warehouse. Hereafter, parts that did have a high number
of demand hits in the last rolling year across all warehouses are set to stocking. As has been
explained in section 1.5, the current stocking policy is based on the number of demand hits in the
last rolling year and the price of a part. For the most expensive parts, a part is only set to stocking
when it has six or more hits in a year. In this case, PACCAR Parts states that it is necessary to
stock the item to be customer friendly. Therefore, this same boundary is applied as classification
criteria for items set to stocking in all warehouses. In other words, a part is considered stocked in
every warehouse if it had six or more hits in the last rolling year. Note that in the case that the
threshold of 6 hits is not met for every of the considered warehouses, the part is not considered
to be stocking in every warehouse. This holds since, in this case, it may be beneficial not to stock
the item in every warehouse but only in some of the warehouse(s). The demand of the other
warehouses could, in this case, still be met by transshipments. For the remaining parts, an IP
model is proposed that decides for every part, for every warehouse individually, whether it is set
to stocking or non-stocking. The IP model is described in the next section.

Figure 4.1: Stocking/non-stocking decision model

2018 2019 2020
Total active parts 166307 166307 166307
Hits = 0 in all warehouses 117065 117308 117024
Hits > 5 in all warehouses 17169 15907 16323
Considered in IP model 32073 33092 32960

Table 4.1: Number of parts per category

4.2 IP model

An IP model is proposed for the parts for which a stocking decision has not been made yet. The
goal of the IP model is to decide per part per warehouse whether the part needs to be stocked or
non-stocked.

Consider the yearly demand for item i at warehouse w (di,w). For every warehouse w, there
are three options regarding how the item i can be stocked:
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1. Stock di,w in warehouse w itself.
2. Stock di,w in another warehouse v (where v ̸= w). Note that this is only possible if the other

warehouse v already stocks the item.
3. Do not stock di,w.

With the four warehouses that are considered in this study, 92 different stocking options for a
part can be defined. A stocking option displays per warehouse whether an item is stocked or
not. Additionally, it displays whether the warehouse stocks the demand for one or more other
warehouse(s). All the stocking options are displayed in Appendix D. A snapshot from this appendix
is displayed in Table 4.2. To clarify, consider the following example of how to interpret a stocking
option: for stocking option 44, the warehouse in Madrid stocks such that it can meet its own
demand and the demand from the warehouse in Budapest. In Leyland, the demand for Leyland
and Eindhoven is stocked. This means that no items are stocked in Eindhoven and Budapest.
Nevertheless, the demand for these warehouses can still be satisfied by the warehouses which store
the demand for these warehouses. For stocking option 45, it can be seen that only Leyland stocks
the item. It stocks the item for itself and Eindhoven. This means that the demand for Madrid
and Budapest is expected to be lost in this case. Note that it can still be possible that a part is
stocked in none of the warehouses (stocking option 1) or in all of the warehouses (stocking option
9). It can also be possible that one warehouse stocks the demand for all warehouses.

Stocking warehouse
Option EHV MAD LEY BUD

1
... ... ... ... ...
9 EHV MAD LEY BUD
43 MAD-BUD LEY
44 MAD-BUD LEY-EHV
45 LEY-EHV
46 MAD LEY-EHV
... ... ... ... ...
89 EHV-MAD-LEY-BUD

Table 4.2: Example of stocking opportunities

The IP model aims to allocate 1 of the 92 stocking options to each part so that the total costs are
minimized, the minimum expected PACCAR Parts European and individual fill rates are obtained,
and such that the capacity constraints of the warehouses are respected. To make this decision,
some parameters need to be estimated per item per warehouse. The following two sections explain
the sets and parameters that are used in the IP model.

4.2.1 Sets

The sets that are used in the IP model are listed in this section.

• The set I represents the items for which a stocking decision needs to be made by the IP
model.

• The set W represents the set of warehouses (i.e., Eindhoven, Madrid, Leyland, and Bud-
apest).

• As has been stated in the previous section, every item can be stocked via 1 of the 92 stocking
options. The set S represents these 92 stocking options.

• At PACCAR Parts, three types of storage locations can be distinguished: small-sized storage
locations for products with a volume up to 0.01 m3, medium-sized storage locations for
products with a volume between 0.01 and 0.25 m3, and large-sized products with a volume
that is larger than 0.25 m3. The set T represents the set of these three storage location
types.
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• A set of individual PACCAR Parts fill rates F is considered. For the IP model, every
individual item needs to be stocked according to a stocking option and according to an
individual PACCAR Parts fill rate. This implies that the IP model has I × S × F decision
variables. The more decision variables an IP model has, the more computational time
is needed to solve the IP model. Therefore, to reduce the model’s computational time,
there needs to be a limited number of individual PACCAR Parts fill rate options. On the
other hand, more individual PACCAR Parts fill rate options improve the model’s accuracy.
Teunter et al. (2010) studied the differences between having three or six classes in inventory
classification. It was concluded that six classes yield more accurate results than only three
classes. Nevertheless, the number of decision variables in the IP model doubles if six instead
of three classes are chosen. Furthermore, the demand for items considered in the IP model is
relatively low. For items with low demand, there is likely overlap in the minimum safety stock
levels that need to be set to obtain a minimum individual PACCAR Parts fill rate. In these
cases, the model becomes more complex while the accuracy does not improve. Therefore,
as a proper trade-off between complexity and accuracy, the line of reasoning by Wingerden,
van et al. (2016) is followed by using 3 fill rate options (80%, 90%, and 97.5%).

4.2.2 Parameters

In this section, the parameters that are used in the IP model are listed. In order to explain the
parameters that are used in the IP model, consider the example data of the last rolling year for
an arbitrary item in Table 4.3. Note that the dealers are closed on Sundays, implicating that they
cannot order on those days (i.e., there are 313 days on which orders can be placed in the example
of Table 4.3).

Warehouse Hits Daily order quantities Empirical demand distribution

EHV 6 1-1-2-4-1-2

P (D1 = 0) = 307/313
P (D1 = 1) = 3/313
P (D1 = 2) = 2/313
P (D1 = 4) = 1/313
0 otherwise

MDR 1 1
P (D1 = 0) = 312/313
P (D1 = 1) = 1/313
0 otherwise

LEY 4 2-1-2-1

P (D1 = 0) = 309/313
P (D1 = 1) = 2/313
P (D1 = 2) = 2/313
0 otherwise

BUD 5 2-4-1-3-2

P (D1 = 0) = 308/313
P (D1 = 1) = 1/313
P (D1 = 2) = 2/313
P (D1 = 3) = 1/313
P (D1 = 4) = 1/313
0 otherwise

Table 4.3: Example empirical data of the last rolling year for an arbitrary item

• For every item i, it is calculated for every stocking option s, what the expected costs are if
a minimum individual PACCAR Parts fill rate f is obtained (cfi,s). In the next section 4.3,
it is explained how the individual PACCAR Parts fill rate and its associated total costs are
approximated.

• For every item i, it is calculated for every stocking option s, what the expected number
of satisfied hits is if a minimum individual PACCAR Parts fill rate f is obtained (hf

i,s).
Consider the example data in Table 4.3. If for this arbitrary item, stocking option 44 is
used (see Table 4.2), it is expected that the hits of all warehouses can be satisfied since
the demand for all items is stocked. This means that in theory, 6+1+4+5 = 16 hits for
item i can be satisfied. Nevertheless, if a minimum individual PACCAR Parts fill rate of
for example 90% is desired, only 90% of the hits can be met in theory. Note that discrete
demand distributions are used for the calculation of the minimum PACCAR Parts fill rate.
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For this reason, it does not necessarily mean that a minimum individual PACCAR Parts fill
rate of exactly 0.9 is obtained. In theory the obtained PACCAR Parts fill rate is slightly
higher than 0.9. For the example, suppose that this PACCAR Parts fill rate level is 0.912,
this means that h2

i,44 = (6+1+4+5) × 0.912 = 14.592 for item i when stocking option 44
and minimum PACCAR Parts fill rate option 2 are used. To clarify, if stocking option 45 is
applied, the demand for Madrid and Budapest is assumed to be lost. In that case, h2

i,45 =
(4+6) × 0.912 = 9.12.

• Donselaar, van and Broekmeulen (2022) describe the effect of honeycombing in warehous-
ing. This effect implies that partially filled unit loads still occupy full unit-load capacities.
Especially for spare parts, where there are many small-sized items, the honeycombing effect
induces that the warehouse capacity is mainly determined by the number of items that are
stored per warehouse. For this reason, capacity constraints at PACCAR Parts are determ-
ined using the number of items stored per warehouse per storage type. The binary variable
xt
i,s,w indicates whether an item i occupies a storage location of type t in warehouse w

when stocking option s is used. Eventually, this variable is used to set a constraint on the
maximum number of items stored per location type per warehouse.

4.3 Cost approximations

A crucial assumption for the IP-model deals with the approximation of the transshipment and
inventory costs. This subsection describes how the costs of the stocking options are approximated.

4.3.1 Transshipment costs

The first cost assumption deals with the transshipment costs. Recall that a dealer places a rush
order if the item is needed immediately. This happens when a truck cannot be used without
the needed parts. In this case, every second the truck is not operating can cause extra costs
for the transportation company. It is concluded that the occurrences of rush transshipments
happen intermittently. For this reason, it is assumed that the probability for a transshipment to
be a rush one is equal to the total number of rush transshipments divided by the total number
of transshipments. From Table 4.4, it can be concluded that the percentage of rush orders is
relatively stable over time. In contrast to the demand data, there are no trends in the percentage
of rush orders over time. For this reason, it is decided to take the average over five years of 10.25%
rush orders that are used for the transshipment cost calculations.

Year Normal Rush Total Fraction rush
2017 4518788 502139 5020927 0.1000
2018 4676432 546939 5223371 0.1047
2019 4607176 517342 5124518 0.1010
2020 4375508 493463 4868971 0.1013
2021 4909345 578219 5487564 0.1054
Average 4617450 527620 5145070 0.1025

Table 4.4: Number of normal and rush orders

For every of the 92 stocking options, it can be estimated how many orders need to be transshipped.
If we consider the example data again with stocking option 45, Leyland stocks the demand for
Eindhoven. It is expected that there are six demand hits in Eindhoven. This implies that we
expect that a transshipment must be performed six times from Leyland to Eindhoven. Note that
we do not take into account the PACCAR Parts fill rate here, since backorders also need to be
transshipped eventually. Using the empirical demand data on the average order size, the expected
order size of a demand hit can be calculated. Using this order size, a shipment’s expected volume
or weight can be calculated. These values can be used in combination with equations 4.1 and 4.2
to calculate the expected costs for a rush and regular transshipment respectively. Recall that the
rush orders are transshiped via DHL who charge a fee based on the weight of the package. Besides,
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the regular orders are only shipped in full trucks (see section 1.3). This explains the linear form
of equations 4.1 and 4.2. Both equations represent the costs of transshipping a single order line
for item i from warehouse w to another warehouse v.

CostsRush transshipment
i,w,v = CostOrder Handling + CostShipment per kg

w,v ×Weightkgi,v. (4.1)

CostsRegular transshipment
i,w,v = CostOrder Handling + CostShipment per m3

w,v × V olumem
3

i,v . (4.2)

If equation 4.1 and 4.2 are used in combination with the probability of having a rush transshipment,
the total expected transshipment costs for transshipping a single order line of item i from warehouse
w to another warehouse v can be calculated (equation 4.3). This way, the expected transshipment
costs for every stocking option can be calculated.

E[Coststransshipment
i,w,v ] = 0.1025× CostsRush transshipment

i,w,v + 0.8975× CostsRegular transshipment
i,w,v .

(4.3)

4.3.2 Inventory costs

For the inventory costs, a more elaborate approach is needed since the inventory costs depend on
the reorder level. To approximate the reorder levels, PACCAR Parts fill rates, and the average
inventory levels, the theory on stochastic inventory models for a single item at a single location
that is described by Donselaar, van and Broekmeulen (2014) is used. However, Donselaar, van and
Broekmeulen (2014) propose formulas for the volume fill rate (see Equation 1.1). Since PACCAR
Parts uses a fill rate that measures the performances regarding the number of satisfied order lines,
the theory on order fill rates described by Larsen and Thorstenson (2008) is used. The described
order fill rate used in this paper has the same definition as the PACCAR Parts fill rate (see
Equation 1.2). In literature, the order fill rate is only described for situations in which a base-
stock policy is applied (Rosling, 2002; Song, 1998; Tempelmeier, 2000; Larsen & Thorstenson,
2008). For this reason, new functions for the order fill rate (PACCAR Parts fill rate) are derived
for discrete demand distributions in case of an (R, s, nQ)-policy. These functions are based on the
studies of Donselaar, van and Broekmeulen (2014) and Larsen and Thorstenson (2008). Before
the approximations of the reorder levels, PACCAR Parts fill rates, and average inventory levels
are explained, the most important assumptions are discussed:

• The paper of Donselaar, van and Broekmeulen (2014), uses an (R, s, nQ)-system that as-
sumes a fixed s and Q throughout the year. In sections 1.5 and 1.4, it is explained that an
adjusted form of the (R, s, nQ)-policy is used at PACCAR Parts, where s and Q depend on
the forecasted demand which is seasonal (i.e., s and Q are not completely stable throughout
the year). Nevertheless, the values for s and Q increase or decrease in the same direction
when the forecasted demand increases or decreases, respectively. Therefore, the theory that
is described by Donselaar, van and Broekmeulen (2014) is still considered to serve as a good
approximation to calculate the average inventory levels throughout the year.

• Donselaar, van and Broekmeulen (2014) and Larsen and Thorstenson (2008) assume that
unsatisfied orders are backordered and that inter-arrival times and order sizes are independ-
ently and identically distributed. These assumptions are also valid for the case at PACCAR
Parts.

• Donselaar, van and Broekmeulen (2014) and Larsen and Thorstenson (2008) assume determ-
inistic lead times. The lead times at PACCAR Parts are, in reality, not deterministic. In
order to enable a clear explanation, the derived formulas in this section also assume determ-
inistic lead times in the first instance. Nonetheless, this assumption is relaxed in section
4.3.4.

Consider the random variable J that describes the order sizes under a base-stock policy with a
fixed level S and lead time L. Furthermore, consider the random variable Dt that describes the
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aggregate demand in the time interval [τ − t, τ ] for any instant τ at which demand occurs. Note
that Dt and the demand at time instant τ (represented by the random variable J) are independent.
Whenever a customer order arrives, there is a probability of P (DL = n) that the net inventory on
hand at the time of the arrival equals S − n. With probability P (J ≤ S − n), the whole customer
order can be delivered from stock (Larsen & Thorstenson, 2008). Hence, Larsen and Thorstenson
(2008) describe the following formula for the order fill rate (OFR) in case of a continuous reviewed
base-stock policy:

OFR(S) =

S−1∑
n=0

P (DL = n)P (J ≤ S − n). (4.4)

In the paper of Donselaar, van and Broekmeulen (2014), the IP just after a potential delivery is
used to derive the formulas for the KPIs in an (R, s, nQ)-policy. By using the IP, the property
that is proved by Hadley and Whitten (1963) can be used. This property is valid in cases where an
(R, s, nQ)-policy is used where the IP just before ordering has to be strictly below s and demand
is discrete. In this case, the property states that the IP just after a potential delivery is uniformly
distributed on the interval (s, s− 1 +Q) (see Equation 4.5).

P (IP = s+ i) =
1

Q
for i = 0, 1, ... , Q− 1 and zero elsewhere. (4.5)

Note that in the case of Larsen and Thorstenson (2008), in which a continuous base stock policy
is used, the IP is always equal to the base-stock level S. If Equation 4.4 is derived via the logic
that is applied in the paper of Donselaar, van and Broekmeulen (2014):

OFR(S) = P (J ≤ IP (τ)−DL)

= P (J ≤ S −DL)

=

∞∑
n=0

P (DL = n)P (J ≤ S − n)

=

S−1∑
n=0

P (DL = n)P (J ≤ S − n). (4.6)

Now, consider an arbitrary moment Z in the interval (τ + L, τ + L + R) for an (R, s, nQ)-policy
(see Figure 4.2. The random variable of the aggregated demand from the last potential delivery
moment until the moment Z at which a potential demand could occur is described by Dz (see
Figure 4.2. Using the property of Equation 4.5, the following expression for the OFR (and thus
PACCAR Parts fill rate) can be derived for moment Z:

PACCAR Parts fill rate at moment Z = P (J ≤ IP (τ)−DL+Z)

=

∞∑
k=0

P (IP = k)P (J ≤ k −DL+Z)

=
1

Q

s+Q−1∑
k=s

P (J ≤ k −DL+Z)

=
1

Q

s+Q−1∑
k=s

∞∑
n=0

P (J ≤ k − n)P (DL+Z = n)

=
1

Q

s+Q−1∑
k=s

k−1∑
n=0

P (J ≤ k − n)P (DL+Z = n). (4.7)
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Figure 4.2: Sample path of an (R, s, nQ) inventory system with R = 3, s = 22, Q = 12, and L = 1

Figure is derived from Donselaar, van and Broekmeulen (2014)

In order to obtain an expression for the PACCAR Pats fill rate during the potential delivery
cycle, the average value of Equation 4.7 across all possible time units during the potential delivery
cycle of length R should be calculated. Note that in the case of PACCAR Parts, R = 1. Besides,
the historical demand data is saved per day (i.e., it is unknown at which moment of the day the
demand order arrived). Because of this and the fact that R has a value of 1, the PACCAR Parts
fill rate is assumed to be equal to Equation 4.7. In a more generic case where demand, R, and L
are discrete and in which R ̸= 1, the estimated average OFR is represented in Equation 4.8.

PACCAR Parts fill rate =
1

R

R∑
t=1

( 1

Q

s+Q−1∑
k=s

k−1∑
n=0

P (J ≤ k − n)P (DL+t = n)
)
. (4.8)

For the average level for the expected IOH , Donselaar, van and Broekmeulen (2014) derived a
formula that is valid for all cases where items are non-perishable, items are backordered in case
of a stockout, lead times are deterministic, an (R, s, nQ)-policy is used, and demand is stationary.
Hence, the expression for the expected IOH applies to the case at PACCAR Parts. The expression
for the expected IOH on moment t is defined as follows:

E[IOH(τ + t)] =
1

Q

Q−1∑
i=0

s+i−1∑
d=0

(s+ i− d)P (Dt = d). (4.9)

Donselaar, van and Broekmeulen (2014) state that the average inventory value during the potential
delivery cycle can be calculated by taking the average value across the interval (τ +L, τ +L+R).
Therefore, the average inventory value is approximated by taking the average value of E[IOH(τ +

L)] and E[IOH(τ +L+R)] (i.e., E[IOH(τ+L)]+E[IOH(τ+L+R)]
2 ). Note that at PACCAR Parts, R is

equal to 1. Since this model is only executed for items with relatively low demand, the differences
between E[IOH(τ + L)] and E[IOH(τ + L+R)] are negligible in most cases.

4.3.3 Total costs calculation

Now that the formulas for the cost approximations are given, the total cost functions can be calcu-
lated for every item i, stocking option s, and target PACCAR Parts fill rate f . Firstly, Equation
4.7 is used to calculate the minimum s level needed to obtain the target PACCAR Parts fill rate
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level. This s level is plugged into Equation 4.9 to calculate the expected inventory levels. PAC-
CAR Parts assumes that the expected inventory costs equal 12% of the inventory value per year.

Seasonality plays a vital role in the operations of PACCAR Parts. As stated before, approx-
imately 25% of the items at PACCAR Parts are forecasted via a seasonal pattern. By using the
demand and order size distributions for a whole year, variation would be overestimated for sea-
sonal products. This could lead to an overestimation of the needed safety stock levels in order to
obtain a minimum PACCAR Parts fill rate, leading to an overestimation of the costs of having
inventory. The seasonality at PACCAR Parts is complex. Different types of seasonal patterns at
PACCAR Parts can be identified. Weather conditions, sales targets, and holiday periods are the
leading causes of the seasonal patterns. Since the seasonal patterns differ per item, it is complex
to include seasonality in an aggregated model. Nevertheless, for most items, the seasonality is
based on the weather conditions. Therefore, the empirical demand and order distributions are
separately derived for the four seasons. Accordingly, the minimum safety stock levels and corres-
ponding expected inventory costs to obtain the minimum PACCAR Part fill rates are calculated
separately. Eventually, an average value for the expected inventory costs is taken across the four
seasons.

These expected inventory costs are added to the expected transshipment costs of Equation 4.3
in order to obtain the total costs regarding an item, stocking option, PACCAR Parts fill rate
combination.

4.3.4 Stochastic lead times

Up to now, it has been assumed that the lead times are deterministic. It has been explained that
the empirical demand data of the demand during one day is used to obtain the convolution of the
demand during the deterministic lead time. However, when the lead time is also assumed to be a
stochastic variable, the empirical lead time data in combination with the demand convolution can
be used to calculate the convolution of the demand during the lead time. For example, consider
a certain empirical lead time distribution that has an equal probability of the lead to be 14 or
15 days (i.e., P (L = 14) = 0.5 and P (L = 15) = 0.5). In this case, the empirical distribution of
the demand during the lead time can be obtained by multiplying both the demand convolution of
the demand during 14 days and the demand during 15 days by 0.5 and adding the probabilities
together. Note that this method can only be applied when the lead times are discrete random
variables. The empirical lead times derived from the PACCAR Parts database are discrete and
can therefore be applied.

The empirical lead time distributions are based on the data in the last rolling year in this re-
search. Recall that the calculation for the cost approximations is performed for every season to
consider the seasonality. This enables us to update the empirical lead time data every season (i.e.,
use the empirical lead time data of quarters two, three, and four of 2019 and quarter one of 2020
to do the calculations for quarter two of 2020).

4.3.5 Lead time selection

The formulas that are derived in the previous subsection can be used to approximate the costs per
stocking option for each item. When doing so, it is crucial to select the proper lead time to derive
the demand distributions used in the formulas. For example, consider Figure 4.3 in which the
examples of the lead times for an arbitrary part are displayed. For this part, the supplier delivers
the goods to the warehouse in Budapest, which cross-docks the parts to Leyland. Also, consider
stocking option 45 again, where the item is only stocked in Leyland. When calculating the costs
for this option, the L that is used to calculate DL+R or DL for the warehouse in Leyland should
consider that the item is cross-docked in Budapest. This means that instead of setting L equal to
15, L should be set equal to 15+28 in this case. In this case, the convolutions of the two empirical
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lead time distributions are used (i.e., the empirical lead time distributions from supplier to BUD
and BUD to LEY).

Figure 4.3: Example of lead times

4.4 Mathematical formulation

On the next page, the mathematical formulation of the IP model is displayed. The objective
function 4.10 minimizes the total expected costs of the network. Note that for every stocking op-
portunity, the total costs, including inventory and transshipment costs, are calculated beforehand.
Constraint 4.11 ensures that every item is stocked via exactly one stocking opportunity - PACCAR
Parts fill rate combination. Constraint 4.12 ensures that a minimum PACCAR Parts European
fill rate is obtained. Using the total number of expected order lines and the desired PACCAR
Parts European fill rate, it can be calculated how many order lines should be satisfied in order
to obtain the desired PACCAR Parts European fill rate. By subtracting this with the number
of order lines that is expected to be satisfied by the parts that are already stocking, a minimum
number of order lines that need to be satisfied by the IP model is obtained. The same logic is
applied in equation 4.13 for each warehouse individual to obtain the minimum desired PACCAR
Parts individual fill rates. Constraint 4.14 ensures that no more than a certain number of items
can be stored per storage location type per warehouse (i.e., the capacity constraints). The last
constraint 4.15 defines the binary decision variable in the model. Note that the binary decision
variable is not dependent on w, implicating that the PACCAR Parts fill rate cannot differ between
warehouses for the same item. If the IP model allowed the PACCAR Parts fill rates between the
four warehouses, the number of decision variables in the IP model would quadruple. At the same
time, it is likely that the majority of the items only become stocking in one or two warehouses
due to the low demand in combination with the capacity restrictions. Hence, it is considered that
quadrupling the number of the decision variables does not outweigh its benefits since no significant
changes in the outcome will be noticed.
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Sets
I Set of items that is considered by the IP model
W Set of warehouses
S Set stocking options
F Set of PACCAR Parts fill rate options
T Set of types of storage locations

Parameters
cfi,s Total costs of item i when stocking option s and PACCAR Parts fill rate option f are used

hf
i,s Expected number of hits of item i that are satisfied when stocking option s and

PACCAR Parts fill rate option f are used

hf
i,s,w Expected number of order hits of item i at warehouse w that are satisfied by warehouse w itself

when stocking option s and PACCAR Parts fill rate option f are used
xt
i,s,w Binary parameter that equals 1 if an item i occupies a storage location of type t

in warehouse w when stocking option s is used, and 0 otherwise
HEUR Total number of hits on a European level for all items
HIND

w Total number of hits at warehouse w for all items
HEUR

A Total number of hits on a European level for items that are already stocked (i.e., group A items)
HIND

A,w Total number of hits at warehouse w for all items that are already stocked (i.e., group A items)

in warehouse w
ut
w Maximum number of items that can be stored in storage locations of type t at warehouse w

atw Number of items that are already stocked in storage location type t in warehouse w
FEUR Minimum value for PACCAR Parts European fill rate
F IND
w Minimum value for PACCAR Parts individual fill rate for warehouse w

FEUR
A Value for PACCAR Parts European fill rate parts that are already stocked (i.e., group A items)

F IND
A,w Value for PACCAR Parts individual fill rates for parts that are already stocked (i.e., group A items)

at warehouse w

Decision variables
yfi,s Binary variable that equals 1 if an item i is stocked via stocking option s

and PACCAR Parts fill rate option f , and 0 otherwise
IP model

min

F∑
f=1

I∑
i=1

S∑
s=1

cfi,sy
f
i,s (4.10)

Subject to

F∑
f=1

S∑
s=1

yfi,s = 1 ∀i ∈ I (4.11)

F∑
f=1

I∑
i=1

S∑
s=1

hf
i,sy

f
i,s ≥ FEURHEUR − (HEUR

A FEUR
A ) (4.12)

F∑
f=1

I∑
i=1

S∑
s=1

hf
i,s,wy

f
i,s ≥ F INDHIND

w − (HIND
A,w F IND

A,w ) ∀w ∈ W (4.13)

F∑
f=1

I∑
i=1

S∑
s=1

xt
i,s,wy

f
i,s ≤ ut

w − atw ∀w ∈ W,∀t ∈ T (4.14)

yfi,s ∈ {0, 1} ∀f ∈ F,∀i ∈ I,∀s ∈ S (4.15)
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Stocking/non-stocking heuristic
There are some challenges regarding the implementation of the IP model that is proposed in the
previous section. The calculations that are needed to approximate the expected PACCAR Parts
fill rates and inventory values per stocking option are relatively complex and computationally
expensive. Additionally, a solver is needed for the IP model to solve while no solver is included
in PACCAR Parts’ planning system. For this reason, a simple heuristic is proposed that is more
convenient to implement for PACCAR Parts. This heuristic is based on the analysis of the stocking
options proposed by the IP model. Section 8.1.4 describes this analysis in more detail. The most
important conclusions are summarized below:

1. The IP model gains the most cost reductions by reallocating stock from Budapest to Eind-
hoven or Leyland. The reduction in transshipment costs mainly drives these cost reductions.

2. To enable this reallocation and still respect the capacity constraints, Eindhoven and Leyland
have to free up space by setting some other items to non-stocking.

3. The targets regarding individual PACCAR Parts fill rates are met relatively easily in Eind-
hoven and Leyland.

4. Transshiping items between Eindhoven and Leyland is cheaper than transshipping from
Budapest to these warehouses.

Based on these conclusions, the following intuition forms the base of the proposed stocking/non-
stocking (SnoS) heuristic: for some items with relatively low demand, it may be beneficial to store
the item only in Eindhoven or Leyland instead of in both warehouses. In this way, space is created
for items that are currently stocked in Budapest and that have high expected transshipment costs.
In the remaining part of this chapter, the heuristic is explained. Note that the heuristic is ex-
ecuted separately for the three stocking location types (small, medium, and large). Additionally,
in Appendix J, the pseudo-code of the SnoS heuristic is displayed.

Step 1: Create space in Leyland and Eindhoven
Recall that in section 1.5, it is explained that an item’s current stocking/non-stocking decision is
based on its price and the number of order lines in the last rolling year. For example, in Eindhoven,
an item is set to stocking when it had more than three demand hits strictly in the last rolling
year, and the price of the item was less than 15 euros. The first step in the heuristic is to increase
the hits boundaries by one (i.g., an item whose price is less than 15 euros now needs four or more
hits). This way, space is created in the warehouses by removing the items with the least number
of order hits. The effect of this stricter stocking policy is displayed in Table 5.1.

Small Medium Large
EHV LEY EHV LEY EHV LEY

Current policy 18251 17136 4098 3807 402 337
Stricter policy (+1 hit) 16772 15399 3826 3496 362 302
Difference 1479 1737 272 311 40 35

Table 5.1: Stocking items per storage location in 2019 for Eindhoven and Leyland

Step 2: Add the removed items to the global stocking items
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The removed items are added to the set of global stocking items. At this moment, we consider the
set of items needs to be allocated to the free stocking locations in the warehouses in Budapest,
Eindhoven, and Leyland. Note that some items removed from the warehouse in Eindhoven and
Leyland are the same. In other words, among the 1479 and 1737 small items that were removed
from Eindhoven and Leyland, respectively, some parts are the same.

Step 3: Consider 4 stocking options per item
Now, the set of items that need to be allocated to the created free spots in the three warehouses
is considered. An item in this set can be stored in one of the three warehouses. Additionally, it
may be beneficial to store the items in both Eindhoven and Leyland because, in these warehouses,
most of the demand occurs. Also, recall that some products that were removed in step 1 were
stocked both in Eindhoven and Leyland. To summarize, we consider the following four stocking
options: BUD, LEY, EHV, and LEY+EHV.

Step 4: Calculate the expected transshipment costs
The expected cost function that was used in the IP model consists of inventory and transshipment
costs. When an item is allocated to a warehouse in this heuristic, it will stock the demand for all
warehouses (i.e., global stocking). This implies that the same amount will be stocked for every
stocking option. Therefore, there are no differences in inventory costs between the stocking op-
tions. An exception to this is the option in which the item is both stored in Leyland in Eindhoven.
Nevertheless, due to the small demand for the items that are considered in this heuristic, these
effects are considered to be negligible. Hence, this heuristic only takes into account the expected
transshipment costs. These expected transshipment costs are calculated in the same way as has
been explained in section 4.3.1

Step 5: For every item, calculate the expected savings per stocking option com-
pared to stocking option of stocking in Budapest
For every item, calculate the expected cost savings for the three stocking options: Leyland, Eind-
hoven, and Eindhoven+Leyland (i.e., the potential savings that can be made when the stocking
option is used instead of the stocking option in Budapest). This can be calculated for a particular
stocking option by subtracting the expected transshipment costs for stocking a particular item in
Budapest by the expected transshipment costs of the other stocking options.

Step 6: Select the item stocking-option possibility that yields the highest savings
Select the item-stocking option combination that yields the highest expected savings according
to the calculations in the previous section. Note that the option can only be selected if space
is left in the warehouse(s) where the item should be stocked according to the stocking option.
Hereafter, delete the allocated item from the list of items to be allocated to a warehouse and
update the free spots in the warehouses. Note that the savings obtained for the stocking option
Eindhoven+Leyland are divided by two since twice as much capacity is needed compared to the
other stocking options.

Step 7: Stop the algorithm once the capacity of the warehouses is full
Eventually, all items that are considered in the heuristic need to be allocated to at least one ware-
house. In this way, the expected PACCAR Parts European fill rate cannot decrease compared to
the current situation. However, on the other hand, the warehouse capacities have to be respected.
Therefore, whenever the amount of free spots in the warehouses equals the number of items that
need to be allocated to a warehouse, the option of stocking the item in both Leyland and Eind-
hoven is not considered anymore.

Note that the warehouse to which the item is assigned will stock the demand for all other ware-
houses. Whenever the stocking option of stocking in Leyland and Eindhoven is chosen, Leyland
stocks its own demand and Eindhoven the rest of the demand. This holds since it is cheaper to
transship from Eindhoven to Madrid and Budapest than from Leyland.
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Chapter 6

Safety stock heuristic

After the stocking/non-stocking decision is made, the next step in this research is to calculate the
optimal safety stock coverage levels for all SKUs that are stocking (i.e., for both the items that
were considered by the IP model and the items that were not). In the previous chapter, safety
stock levels were only determined for stocking items considered by the IP model (i.e., not for items
that had over five hits in every warehouse in the last rolling year). Note that the safety stock
levels that the IP model determined only considered three targets PACCAR Parts fill rates per
item. Furthermore, these PACCAR Parts fill rate targets were assumed to be the same for every
warehouse in which the item is stocked. In order to obtain accurate results for an aggregated
model that considers all SKUs individually, a new safety stock setting approach is desired.

As a first method for calculating the optimal safety stock levels, the heuristic that is described by
Donselaar, van et al. (2021) is tested. The heuristic aims to set reorder levels in periodic review
inventory systems with an aggregated service constraint. This chapter explains the model that is
designed by Donselaar, van et al. (2021), adjusts it to the problem at hand at PACCAR Parts,
discusses its assumptions, and explains the greedy approach that is proposed by Sherbrooke (2006)
to solve the model efficiently.

6.1 Optimization problem

The model that is proposed by Donselaar, van et al. (2021) can be described as an optimization
problem. The objective of the optimization model is to minimize the total expected holding costs
for a set of items I, subject to the restriction that an aggregated minimum service level is obtained.
In the case of PACCAR Parts, this aggregated service level is the PACCAR Parts European fill
rate. The mathematical model is expressed as follows:

min

I∑
i=1

ciE[IOH
i ] (6.1)

Subject to

I∑
i=1

wi × PACCAR Parts fill ratei ≥ PACCAR Parts fill rate∗, (6.2)

I∑
i=1

wi = 1, (6.3)

where:

• ci reflects the holding costs for item i.
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• E[IOH
i ] reflects the average expected inventory on hand for item i.

• PACCAR Parts fill ratei reflects the individual PACCAR Parts fill rate for item i.
• PACCAR Parts fill rate∗ reflects the target aggregated European fill rate.
• wi reflect the weight in the fill rate calculation for item i.

In this model, E[IOH
i ] and PACCAR Parts fill ratei depend on the reorder level s of item i (si).

Therefore, si is the decision variable in the model. In section 4.3, expressions for the PACCAR
Parts fill rate and E[IOH

i ] are given (equations 4.9 and 4.7). These expressions are also used in
this model. Additionally, Donselaar, van et al. (2021) describe two approaches for determining the
weights. Namely, one based on the order volumes and one on the turnover. At PACCAR Parts, the
weights for the aggregated PACCAR Parts European fill rate depend on the number of order hits.
Hence, the weight definition in the model that is used in this research is as follows: wi =

hi∑I
i hi

,

where hi are the number of order hits in the last rolling year for item i. A crucial difference
between the model that is described by Donselaar, van et al. (2021) and its implementation in
this thesis deals with the stocking/non-stocking decision. In the model that Donselaar, van et
al. (2021) use, it is assumed that reorder levels can take the value of zero. If an item its reorder
level takes the value of 0, it implies that the item is non-stocking. This study already makes the
stocking/non-stocking decision before the safety stock heuristic is executed. Since the non-stocking
items are considered in the aggregated PACCAR Parts fill rate calculation, they have to be taken
into account in the model to obtain reliable results. By considering both the stocking and non-
stocking items in set I, the weights are calculated based on their contribution to the aggregated
PACCAR Parts fill rate for all articles. Note that the PACCAR Parts fill rate of non-stocking
articles are always equal to 0.

6.2 Assumptions

6.2.1 Multi-location problem

Initially, the heuristic that is proposed by Donselaar, van et al. (2021) is designed for single-location
problems (i.e., without transshipments). Nevertheless, in the stocking/non-stocking decision, the
stocking options that are selected per product indicate how the expected transshipment streams
are organized. Therefore, the multi-location problem is approximated by treating it as a single-
location model that uses the aggregated demand and order size distributions for items that are
stocked via a stocking policy that suggests shared inventory. In this way, a constraint can be set
on the aggregated service level (i.e., PACCAR Parts European fill rate). Note that in this case,
the individual PACCAR Part fill rates are not taken into account. Also, note that the expected
transshipment costs are independent of the reorder level. This holds since items that cannot be
transshipped immediately if they are not on stock need to be back-ordered eventually. For this
reason, the expected transshipment costs are not considered in this model.

6.2.2 Seasonality

Recall that seasonality plays a vital role in the operations of PACCAR Parts. In the same line of
reasoning as in section 1.6.2, the model is executed for the four seasons separately. These models’
safety stock levels are translated into safety stock coverage levels expressed in days (see Equation
6.4). Across the four seasons, the mean value of the four safety stock coverage levels is taken.
Since the forecasts per item consider the seasonal patterns, the safety stock coverage can adapt to
the seasonal patterns better than the numerical safety stock levels. Another advantage of using
safety stock coverage levels over numerical safety stock levels comes with the nature of the spare-
parts industry. The relatively large share of low-demand items with high variability makes it hard
to set accurate safety stock levels one year in advance. When using the numerical safety stock
levels, the numerical safety stock levels have to be set one year in advance in order to adapt to the
seasonality. In contrast, the forecast is updated every month. Hence, using up-to-date forecasts
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with the safety stock coverage levels is more likely to yield accurate results than numerical safety
stock levels that are calculated one year in advance.

Safety stock coverage (in days) = Numerical safety stock level× Number of days in period

Demand during period
.

(6.4)

6.2.3 Deterministic lead times

Especially in the past two years, supply disruptions and variations played a significant role in the
operations of PACCAR Parts. As explained in 2.3, the COVID-19 situation and chip shortage
caused supply disruptions in the PACCAR Parts supply chain. In order to take into account
the stochastic lead times, the empirical lead time distributions are used to derive the probability
functions for the demand during the lead time. This is done in the same way as explained in
section 4.3.4.

6.3 Greedy approach

The described optimization model is time-consuming to solve. Sherbrooke (2006) describe a greedy
approach that solves the optimization problem more efficiently. Donselaar, van et al. (2021)
conclude that the greedy approach yields nearly as good as the optimal solution that is obtained
by solving the optimization model exactly. Therefore, the greedy approach is used in this thesis.
The greedy approach starts by setting every reorder level equal to one. Note that this heuristic is
only executed for the items that are considered to be stocking. For every item, the ratio between
the increase in PACCAR Parts European fill rate and the increase in total costs is calculated (see
equation 6.5). Iteratively, the safety stock level of the item with the highest ratio is increased by
one. The algorithm stops once the desired PACCAR Parts European fill rate is obtained.

ratioi =
wi

(
PACCAR Parts fill ratei(s+ 1)− PACCAR Parts fill ratei(s)

)
ci

(
E[IOH

i ](s+ 1)− E[IOH
i ](s)

) . (6.5)
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Genetic algorithm

In the previous chapter, the safety stock heuristic that is proposed by Donselaar, van et al. (2021)
has been described. Regarding the implementation of this heuristic at PACCAR Parts, there are
some disadvantages. Firstly, the heuristic decides on an item’s individual safety stock level based
on its empirical demand distribution of the last rolling year. For most of the items in the spare
parts industry, there are only a few order hits per year. This means that the safety stock decision
for most items is based on an empirical demand distribution with only a few observations. The
accuracy of these distributions is therefore questionable. Note that the model that is described in
Chapter 4 also uses the empirical demand distributions from the last rolling year. Nevertheless, this
model uses the empirical demand distributions to make cost approximations that serve as an input
for an IP model that makes a binary decision. The empirical demand distributions in the safety
stock heuristic are used directly to make a numerical decision. In the latter case, having accurate
demand distributions is crucial. In the method proposed in this chapter, no empirical demand
and lead time distributions are used to estimate individual safety stock coverage levels. Moreover,
the management of PACCAR Parts prefers a model that is easy to implement in the planning
system JDA. The safety stock heuristic encounters the same problem as the IP model. Namely, the
complex cost calculations are hard to implement into the planning system JDA. The management
of PACCAR Parts prefers a metric that is easy to implement in JDA, such as the 9-grid table that
is currently used (see Section 1.5). Hence, this chapter proposes a new classification method for
PACCAR Parts that is relatively easily implementable for PACCAR Parts. Furthermore, a Real
Coded Genetic Algorithm (RCGA) is used to determine the near-optimal safety stock coverage
levels per class.

7.1 Classification

In section 2.1, it was concluded that the current classification method PACCAR Part uses is
sub-optimal. For the renewed inventory classification, an important trade-off has to be made.
On the one hand, it is desired to have enough categories to propose a safety stock coverage level
that is representative of each item in the category. On the other hand, it is desired to restrain
the number of categories in order to limit the complexity of the RCGA and the implementation.
Besides, a high number of categories can lead to over-fitting within each category. In literature,
much research is performed on the best way to classify spare parts inventory. The classification
methods that are used in this thesis are based on the studies of Wingerden, van et al. (2016),
Teunter et al. (2010), and Williams (1984). The proposed classification method is based on two
criteria explained in the next two subsections. The first classification criterion deals with the
trade-off between service level and inventory costs, while the second classification criterion deals
with the variability of an item.
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7.1.1 PACCAR Parts fill rate and inventory costs trade-off

Recall that most classification methods in the literature rely on ABC classification (see section
4.1). The intuition behind ABC classification is that items with relatively high demand and rel-
atively low prices are the most efficient to stock since they contribute the most to the aggregated
service level relative to their contribution to the total costs. Wingerden, van et al. (2016) in-
vestigated which classification criteria captures this trade-off the best. It was concluded that the
one-dimensional demand

price −ratio was the most efficient method to capture the trade-off. This cri-
terion outperformed the two-dimensional classification strategy in which items are classified based
on a matrix for different demand and price intervals. Wingerden, van et al. (2016) state that the
two-dimensional classification method can also capture the trade-off to some extent, although it
does not directly capture the trade-off for each SKU individually. Furthermore, more classes are
needed since a two-dimensional matrix is used.

An important difference between the case in the study of Wingerden, van et al. (2016) and PAC-
CAR Parts comes with the service level definition. Wingerden, van et al. (2016) use the volume fill
rate definition instead of the order fill rate definition that is used at PACCAR Parts. Regarding
the volume fill rate, demand divided by price reflects the trade-off between service level and costs
properly since each demand unit of a particular item contributes proportionally to the aggregated
volume fill rate and total inventory costs. However, regarding the order fill rate, a demand unit
is not contributing proportionally to the order fill rate and costs (i.e., one order hit can consist
of multiple demand units). For this reason, the classification criterion is adjusted to the order
fill rate. Equation 7.1 reflects the new classification criteria. Using this criterion, the trade-off
between order fill rate and inventory costs is made by weighting the number of hits to the expected
price of holding inventory of one hit (which is equal to the price times the expected customer order
size). Teunter et al. (2010) use a similar criterion to classify the inventory in which they include
the average order quantity per SKU (Q) in their classification criterion. In this study, a fixed cost
per backorder is taken into account. Since Teunter et al. (2010) prove that the expected number
of backorders depends on Q, they include this variable in their classification criterion. This thesis
assumes no backorder costs, and a constraint is set on the minimum desired PACCAR Parts fill
rates. In that case, the value of Q only influences the cycle stock costs. Since these costs are irrel-
evant when evaluating the safety stock policy, Q is not considered in the classification criterion.

Classification criterion =
Hits

Price× E[OS]
. (7.1)

To clarify, consider the example data in Table 7.1. Item A, B, and C had the same aggregated
demand in the previous year. Additionally, the price is the same for the items. The only difference
between the items is the number of hits and expected order sizes. For example, item A was only
ordered in one order line time while Item B was ordered in ten order lines. If the classification
criterion that is originally proposed by Wingerden, van et al. (2016) is used, both items items
would get the same classification score. However, item B contributes ten times as much to the
aggregated PACCAR Parts fill rate as item A. Intuitively, it is illogical to give the same score to
A en B in this case. Therefore, the proposed classification criterion distinguished the parts based
on their trade-off between contribution in aggregated PACCAR Parts fill rate and total inventory
costs. Teunter et al. (2010) investigated the effects of having three or six classes in a classification

Item A Item B Item C
Demand 10 10 10
Price 5 5 5
E[OS] 10 1 2
Hits 1 10 5
Demand
Price 2 2 2

Hits
Price×E[OS]

0.02 2 0.50

Table 7.1: Example data for classification criteria
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based on demand and price. Naturally, having six classes outperformed the case in which three
classes were distinguished. Additionally, Teunter et al. (2010) showed that the advantage of having
six over three classes increases with the number of SKUs considered. Since the number of SKUs
at PACCAR Parts is relatively high, it is decided to use six classes. Furthermore, Teunter et al.
(2010) explained a rule of thumb for setting the boundaries of the six classes. This rule of thumb
states that the class sizes should increase in the opposite direction of the service level per class that
is needed. More specifically, 4% of the SKUs with the highest classification value are considered
to be the most important and need the highest safety stock level, followed by the next 7%, and so
on. Eventually, the increasing class sizes should contain 4%, 7%, 10%, 16%, 25%, and 38% of the
SKUs, respectively. In this way, the desired service level per class moves in the opposite direction
of the class sizes. Table 7.2 displays the lower boundaries for the classification criterion per year
when the class sizes that are proposed by Teunter et al. (2010) are used. It is observed that the
boundaries are stable across the years. In order to make a robust classification and compare the
safety stock coverage levels per class across the years, the same boundaries are used for each year.
These boundaries are set to the average in Table 7.2.

4% 7% 10% 16% 25% 38%
2019 25.44 10.03 4.52 1.80 0.50 0.00
2020 25.32 10 4.51 1.76 0.49 0.00
2021 25.74 10.11 4.55 1.77 0.49 0.00
Average 25.50 10.05 4.53 1.78 0.49 0.00

Table 7.2: Lower boundaries classification criterion per year

7.1.2 Variability

Since six classes are created for the trade-off between PACCAR Parts fill rate and inventory costs,
every classification regarding the variability six-folds the total number of classes. In order to limit
the number of total classes, it is desired to have a one-dimensional classification with only three
classes for the variability. Williams (1984) proposes a simple method for defining the variability
of a certain part during the lead time. This method considers the variability due to the number
of orders arriving during the lead time, the variability due to the order sizes, and the variability
due to the lead time. Assume that the numbers of orders arriving in successive units of time
per SKU are Independent, Identically Distributed Random Variables (IIDRV) with mean n̄ and
variance var(n). Furthermore, assume that the order sizes are IIDRV with mean j̄ and variance
var(j). Finally, suppose that the lead times are IIDRV with mean L̄ and variance var(L̄). Note
that the three IIDRVs are also independent of each other. Williams (1984) derive a dimensionless
expression for the coefficient of variation during the lead time (C2

DDLT ):

C2
DDLT =

C2
n

L̄
+

C2
j

n̄L̄
+ C2

L, (7.2)

where Cn is the coefficient of variation of the number of orders that arrive per time unit (the time
unit is days in this case), Cj is the coefficient of variation of the order size, and CL is the coefficient
of variation of the lead time. This equation enables one to give a single score for the variabil-
ity of a part. This variability score can be combined with the six classification criteria defined
in the previous subsection. This way, a two-dimensional matrix is obtained for which the near-
optimal safety stock coverage levels are determined using the RCGA explained in the next section.

The rule of thumb that is proposed by Teunter et al. (2010) is not appropriate to use in the
context of variability since it is based on a trade-off between two parameters (i.e., demand and
price). In the case of variability, no trade-off is made, and the classification criterion just gives a
score to the total variation during the lead time. In literature, no unanimous method is used for
determining the class sizes or boundaries for spare parts classification based on the coefficient of
variation (CV ). However, most of the studies assume 3 or 4 classes (Williams, 1984; Syntetos,
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Boylan & Croston, 2005; do Rego & De Mesquita, 2015; Boylan, Syntetos & Karakostas, 2008).
Additionally, cut-off values of 0.5 and 1.0 for the CV 2 are often used as class boundaries. Whenever
the CV 2 exceeds the value of 1.0, items are often referred to as highly-variable or sporadic items.
In order to find out whether the same boundaries can be applied to the case at PACCAR Parts,
Table 7.3 displays the distribution of two different settings for the boundaries of CV 2. It can
be seen that the boundaries of 0.5 and 1.0 yield distributions in which almost 70 % of the items
are covered in the first class, while less than 0.5 % is covered in the last class. It is considered
that this highly unbalanced distribution cannot classify the SKUs properly in terms of variation.
Therefore, other boundaries were tested. Eventually, the boundaries of 0.4 and 0.7 are assumed
to yield more of a convenient classification from a practical point of view (see Table 7.3). Namely,
the majority of the SKUs are in classes 1 and 2. This way, a distinction can be made between
items with a low and a high level of overall variability. Additionally, somewhat more than 5% of
the items with an extremely high level of variability are classified in class 3. Consider Equation
7.2, due to the division by L̄ and n̄L̄ in the first and second term respectively, an extremely high
value of C2

DDLT (≥0.7) is almost always due to the lead time variability. Therefore, the items
in class 3 are considered to be the items that have a high probability of having supply disrup-
tions. As has been proven in section 2.3, the supply disruptions drastically influence the stocking
policy’s performance. Hence, the SKUs with the highest risk of supply disruptions are considered
separately in class 3.

Boundaries of 0.5 and 1.0 Boundaries of 0.4 and 0.7

CV 2 < 0.5 0.5 ≤ CV 2 < 1 CV 2 ≥ 1 CV 2 < 0.4 0.4 ≤ CV 2 < 0.7 CV 2 ≥ 0.7
2019 68.8% 31.0% 0.2% 45.4% 48.9% 5.7%
2020 68.6% 31.0% 0.3% 45.5% 48.6% 6.0%
2021 66.2% 32.9% 0.5% 42.6% 50.4% 7.0%

Table 7.3: Distribution of SKUs per category for different boundaries of CV 2

The two classifications are combined into a two-dimensional matrix. The resulting matrix consists
of 18 classes. The classes are numbered and can be found in Table 7.4. The detailed distributions
of the SKUs per class per year are displayed in Appendix M.

Hits/(Price × E[OS])
[0,00, 0.49) [0.49, 1.78) [1.78, 4.53) [4.53, 10.05) [10.05, 25.50) [25.50, ∞)

C2
DDLT

[0, 0.4) 1 4 7 10 13 16
[0.4, 0.7) 2 5 8 11 14 17
[0.7, ∞) 3 6 9 12 15 18

Table 7.4: Class number per classification interval

7.2 Real-Coded Genetic Algorithm

After the classes are defined, the safety stock coverage levels per class need to be determined.
Ideally, all combinations for the safety stock coverage levels per class are simulated. This way, the
combination of safety stock coverage levels that yield the lowest total costs and respect the PAC-
CAR Parts fill rate constraints can be selected. However, simulating all different combinations of
safety stock coverage levels would be highly time-consuming. Hence, an algorithmic approach is
needed to find near-optimal solutions efficiently. This same conclusion is drawn by authors that
also study optimal safety stock setting in multi-location problems. Namely, these problems are
considered NP-hard, and the possibilities to solve them exactly are limited (Feng et al., 2017;
Gu et al., 2020; Hochmuth & Köchel, 2012). Meissner and Senicheva (2018) and Paterson et al.
(2012) concluded that using dynamic programming is computational too expensive for large prob-
lem sizes such as the problem at PACCAR Parts. Problems with similar sizes that also consider
transshipments often use Genetic Algorithms (GAs) to solve their problems (Nakandala et al.,
2016; Yu et al., 2020; Feng et al., 2017; Gu et al., 2020; Hochmuth & Köchel, 2012). Genetic
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Algorithms (GAs) are algorithms based on the natural evolution of biological systems. The GA is
a combination of classical Darwinian evolutionary theory, the selectionism of Weismann, and the
genetics of Mendel (Du & Swamy, 2016). The idea of the algorithm is to combine several good
solutions to get a better one. By iteratively combining good solutions using crossovers, mutations,
and selection, a near-optimal solution is found in an efficient way (H. Li & Jiang, 2012). Hence,
it has been decided to use this approach to solve the problem at PACCAR Parts.

Conventionally, GAs are based on binary problems (Du & Swamy, 2016). However, the prob-
lem of determining the safety stock coverage levels is not a binary problem. Therefore, a special
type of GA is needed to solve the problem. This type is called a Real-Coded Genetic Algorithm
(RCGA). In RCGA, every decision variable is displayed directly in the vector (i.g., for every class,
a numerical safety stock coverage level). Figure 7.1 displays the vector representation that is used
in the proposed RCGA at PACCAR Parts. Note that the safety stock coverage is a floating-point
number in this case. RCGA has several advantages over binary-coded GA. RCGA is faster, more
consistent from run to run, and provides higher accuracy than binary-coded GA (Du & Swamy,
2016).
In a GA, the population consists of several chromosomes, representing a solution to the problem.

Figure 7.1: Vector representation in RCGA for Paccar Parts case per category

A chromosome consists of genes representing a class’s safety stock coverage levels. To clarify, the
vector displayed in Figure 7.1 is called a chromosome, and the vector elements are called genes.
For each of the chromosomes, the fitness value is calculated using the simulation model that is
represented in Figure 3.1. These fitness values are based on the total costs that the simulation
model obtains if the safety stock coverage levels of the chromosome are used. Additionally, pen-
alty costs are added whenever constraints regarding the minimum PACCAR Parts fill rates are
violated. Hereafter, crossover and mutation operators serve to improve the solution and explore
the solution space (Deb, 2000). Finally, if the solution converges, the algorithm is stopped. The
following subsections explain the steps that are used in the proposed RCGA in more detail.

7.2.1 Initialize population

The first step in the GA is to define the initial population. The size of the initial population is often
between 20 and 100 chromosomes. Du and Swamy (2016) argue that increasing the population size
increases the genetic diversity, enabling the algorithm to discover the full solution space. There
is no need to discover the full solution space for the case at hand due to the substantiation of
the chromosomes. Consider the six classification scores that are obtained using the classification
criterion of Equation 7.1 to be represented by the set P. Moreover, consider the three variability
scores that are obtained by using Equation 7.2 to be represented by the set Q. The classification
that is represented in the set P relies on the theory that is proposed by Teunter et al. (2010).
They state that the lower an item’s classification score, the less the aggregated service level can
increase relative to the increase in total costs when more safety stock is kept. Based on this, the
solutions that the RCGA considers have to respect the following property:

Lemma 1 For every element q in the set Q it holds that: S1,q ≤ S2,q ≤ S3,q ≤ S4,q ≤ S5,q ≤ S6,q,

where Sp,q represents the safety stock coverage of items that have a classification score p and
variability score q. Items with a higher level of variability need a higher safety stock level to
obtain the same service levels (Zipkin, 2000). Hence, it also follows that:
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Lemma 2 For every element p in the set P it holds that: Sp,1 ≤ Sp,2 ≤ Sp,3.

For this reason, the solution space that needs to be discovered only needs to take into account
solutions in which the safety stock coverage levels respect Lemmas 1 and 2.

For the case at PACCAR Parts, the fitness value of every chromosome needs to be calculated
via simulation. This implies that the computational time increases when the population size in-
creases. For this reason, it is chosen to set the population size to a relatively small number (25)
and to use crossover and mutation operators such that only new offspring chromosomes are created
that respect Lemmas 1 and 2 (see sections 7.2.4 and 7.2.5).

Usually, the chromosomes in the initial population are obtained by choosing random values for
the genes in the chromosomes (Du & Swamy, 2016). The disadvantage of this approach is that it
takes significantly more iterations before the RCGA finds an optimal solution. This holds since the
RCGA is not searching in the right direction. In the RCGA that is proposed for this research, it is
desired to have as few iterations as possible because of the computationally expensive fitness eval-
uation. It is therefore decided to choose the initial population not wholly random. This way, the
possible solutions are already in the right direction, and fewer iterations are needed (Altiparmak,
Gen, Lin & Paksoy, 2006).

The initial population is built up by considering five different intervals of safety stock cover-
age levels from which six random genes are drawn. The randomly generated genes are sorted in
non-decreasing order. The obtained six values are used to form the safety stock coverage levels of
the group with the lowest variation score per class (i.e., classes 1, 4, 7, 10, and 13 in Table 7.4).
The solution space is diversified by using five different intervals from which random numbers can
be drawn. For each of the six safety stock coverage levels that are obtained by now, two random
numbers between 0 and 25 are drawn and sorted in non-decreasing order. These two numbers are
added to the safety stock level of the group with the lowest variation score per class and represent
the two other variability groups within a class. In this way, Lemmas 1 and 2 are respected when
the initial population is created. The upper bound of 25 is chosen so that the solution space is not
made unnecessarily big by allowing illogical solutions. This could increase the computational time
significantly. Note that the solutions obtained by the safety stock heuristic or the safety stock
levels proposed by the IP model cannot be used here. This holds since the proposed classification
algorithm is not adopted in these two models, implying Lemmas 1 and 2 are not respected.

7.2.2 Calculate fitness value

In GAs or RCGAs, the fitness value is usually calculated by filling in a single formula. In the
proposed form of the RCGA, the fitness value is calculated via simulation. The challenge regard-
ing this comes with computational time. Namely, for every chromosome, a simulation needs to
be run. Moreover, in every iteration of the RCGA new offspring or mutated chromosomes are
obtained for which the simulation needs to be run again. On the one hand, the number of parts
that are considered in the simulation should be minimized to reduce the computational time. On
the other hand, the more parts that are considered, the more representative the simulation model
is. Although simulating too many items could cause overfitting.

Figure 7.2 represents the run times for different values of the number of parts that are con-
sidered in the simulation. It can be seen that there is a linear relationship between the run time
and the number of parts that are considered. In total, there are approximately 35000 unique parts
per year that are stocked. Simulating 3500 of these parts is chosen to calculate the fitness value.
In this way, approximately 10% of the parts are simulated in approximately 5 minutes. This is
considered to give the proper trade-off between having a representative sample, minimizing the
computational time, and preventing overfitting. Eventually, the RCGA is run five times using the
simulation model with 10% of the items. A representative safety stock coverage level per class is
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obtained by taking the average value of the outcomes. The random parts are chosen so that the
representation per class is equal to the percentages in Table M.1. If only the stocking articles were
simulated, incorrect PACCAR Parts fill rates would be obtained since the backorders resulting
from non-stocking articles are neglected. For this reason, the obtained PACCAR Parts fill rates
are subtracted by the percentages that are displayed in Table 7.5. The PACCAR Parts fill rate
losses due to the non-stocking items are displayed in this table. As an illustration, in 2019, in
0.65% of the cases, an incoming order line was backordered immediately because the item was
non-stocking in all European warehouses.

Figure 7.2: Simulation run times for different values of the number of parts considered

2019 2020 2021
European 0.65% 0.67% 0.63%
Eindhoven 2.64% 2.88% 2.67%
Madrid 1.61% 1.65% 1.50%
Leyland 1.83% 1.88% 1.55%
Budapest 1.00% 1.03% 1.16%

Table 7.5: PACCAR Parts fill rates losses due to non-stocking items

The fitness value has to represent a single value to compare the fitness of the chromosomes (Du &
Swamy, 2016). For the case of PACCAR Parts, this value has to consider the total costs and the
extent to which the PACCAR Parts fill rates targets are respected. In most of the GA applications
in the literature, a penalty function method has been used to consider constraints. In this way,
infeasible solutions are penalized. The challenge regarding this method comes with the definition
of the penalty function. A simplistic way of setting the penalty function is by using the so-called
death penalty. In this approach, infeasible solutions are penalized with a big value M that ensures
that the fitness value is so bad that the solution is eliminated by the GA (Du & Swamy, 2016).
The disadvantage of this approach is that it does not distinguish between nearly infeasible and
very infeasible solutions. Consequently, valuable information on the nearly infeasible solutions is
lost. In order to make a distinction between infeasible solutions, a dynamic penalty approach can
be used. This approach multiplies the amount of constraint violation j with a penalty parameter
Rj . However, the advantage of this approach is that the penalty parameter has to be defined.
For this reason, Deb (2000) proposed an efficient constraint handling method that overcomes the
disadvantages of the death penalty and dynamic penalty approaches. Three main requirements
for the penalty function are defined:

1. Any feasible solution is preferred to an infeasible solution.
2. Among two feasible solutions, the one having a better objective function is preferred.
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3. Among two infeasible solutions, the one having a smaller constraint violation is preferred.

Based on these requirements, the efficient constraint handling equation (Equation 7.3) is proposed.
Note that the function is adjusted to the case of PACCAR Parts.

F (x) =

{
f(x) if solution is feasible,

fworst + g1(x)f(x) +
1
4

∑J
j=2 gj(x)f(x), otherwise,

(7.3)

where:

• J is the set of constraints. The first constraint (j = 1) represents the PACCAR Parts
European fill rate constraint, and the remaining constraints represent the PACCAR Parts
regional fill rate constraints.

• F (q) is the fitness value of chromosome q.
• f(q) is the value for the total costs of chromosome q that the simulation model obtains.
• fworst is the highest value for the total costs among the chromosomes that yield a feasible
solution.

• gj(q) represents the percentage that constraint j is violated by chromosome q.

The main advantage of this method is that no parameter has to be set. Therefore, in the case
of PACCAR Parts, this is the most efficient method for constraint handling. The only drawback
for the PACCAR Parts case is that some constraints are not equally scaled. In other words, the
PACCAR Parts European fill rate is more critical than the PACCAR Parts regional fill rates. For
this reason, violations in PACCAR Parts regional fill rates are penalized less than in the PACCAR
Parts European fill rate.

7.2.3 Selection

The driving force of GA is the selection of individuals based on their fitness value to generate a
new generation (Du & Swamy, 2016). In the proposed RCGA, elitism selection is used. Elitism
ranks all parent chromosomes based on their fitness value. The 17 chromosomes with the highest
fitness value are selected for the next generation. The remaining eight chromosomes are created
via genetic operators. It is chosen to generate eight new chromosomes per iteration because the
laptop on which the RCGA code must run has eight logical processors. This implies that eight
simulations at the same time can be run using the multiprocessing library in Python. In other
words, per iteration, eight new chromosomes (offsprings) can be simulated without increasing the
computational time per iteration significantly.

The crossover operators that produce the eight new offspring chromosomes have to replace the
eight worst chromosomes in the current population. In order to obtain the offspring chromosomes,
parent chromosomes have to be selected that undergo crossover operations. These parent chromo-
somes are selected via roulette-wheel selection. A roulette wheel is spun twice, and chromosomes
with a higher fitness value are more likely to get selected. The probability of getting selected is
proportional to the fitness value of the fitness value (Du & Swamy, 2016). In other words, the
fitter the chromosome is, the higher the probability of getting selected as a parent chromosome.
For each crossover operation that is proposed in section 7.2.4, two new parents are selected out of
the population. Note that the parents need to be different from each other. When the first parent
is selected, it is excluded from the roulette wheel selection of the second parent.

7.2.4 Crossover

Once the parents are selected, genetic operations can be executed. The genetic operation that
yields the most significant results is the crossover operation (Du & Swamy, 2016). In total, it is
desired to create eight new offspring chromosomes be created by crossovers and mutations due
to the eight logical processors. Since the crossovers are considered to yield the most significant
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results, it is chosen to obtain six new offsprings from crossover operations such that space for
two new offsprings from mutations is left. RCGA can use other crossover operators than the
ones that are used in binary-coded GA. The RCGA crossover operators can push the algorithm
towards a better solution more efficiently since less randomness is involved (Du & Swamy, 2016).
In the proposed RCGA, linear crossover operators are suggested. Linear crossover operators
provide a linear combination between one or more parent chromosomes. By using linear crossovers,
crossovers can be used without violating Lemmas 1 and 2. There are two types of linear crossovers
suggested:

1. Problem-oriented crossover. To every chromosome cq in the set of chromosomes Q, a

weight (wq) is allocated that allows to create a new offpsring (c
′
) in the following manner:

c
′
=

Q∑
q=1

cqwq. (7.4)

The weights are determined using a simple Linear Programming (LP) model that minim-
izes the total costs constraint to the PACCAR Parts fill rate constraints. The LP model is
defined as follows:

Sets, parameters, and decision variable
Q Set of chromosomes in the population
J Set of PACCAR Parts fill rates in the population
F ∗
j Target PACCAR Parts fill rate level for j

tq Total costs of chromosome q (inventory + transshipments)
Fq,j Value of PACCAR Parts fill rate j of chromosome q
wq Decision variable representing the weight of chromosome q in the new offspring

min

Q∑
q=1

tqwq (7.5)

Subject to

Q∑
q=1

Fq,jwq ≥ F ∗
j ∀j ∈ J (7.6)

Q∑
q=1

wq = 1 (7.7)

0 ≤ wq ≤ 1 ∀q ∈ Q (7.8)

2. Random linear crossover Consider the vector of parent 1 and 2 as c1 and c2 respectively.
The offsprings c

′

1 and c
′

2 of c1 and c2 respectively can be obtained in the following manner:

c
′

1 = λc1 + (1− λ)c2, (7.9)

c
′

2 = λc2 + (1− λ)c1, (7.10)

where 0 < λ < 1. The next two offsprings are created by choosing a random value for λ. If
λ = 0.5, only one offspring is created. In this case, the process is repeated until λ ̸= 0.5.

The problem-oriented crossover is used to generate the first out of the desired six offspring chro-
mosomes. The random linear crossover creates the other five chromosomes. However, in some
cases, the LP model assigns a weight equal to 1 to a certain chromosome. This implies that the
problem-oriented crossover creates no new offspring. In that case, all six offspring chromosomes
are created via the random linear crossover.
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7.2.5 Mutation

After the crossover operations, the population undergoes mutation operations. Mutations add dif-
ferences to the solution space (Ray, Singh, Isaacs & Smith, 2009). The new offspring chromosome
can be obtained by replacing one or more genes in chromosome c (Du & Swamy, 2016). Consider
cifori = 1, ..., n, with n the number of genes in a chromosome. In RCGA, the Gaussian mutation
method is usually applied (Srinivas & Patnaik, 1994). It adds a Gaussian random number to one
a gene in chromosome c and produces the offspring chromosome c′ in the following manner:

ci
′ = ci +N(0, σi), (7.11)

where N(0, σi) is a random number drawn from the normal distribution with mean 0 and standard
deviation σi. Traditionally, σi is a decreasing function with respect to the number of generations
t. The following function for σi is used:

σi(t) =
1√
1 + t

. (7.12)

In some exceptional cases, it can happen that after a mutation operation, Lemmas 1 and 2 are
violated. In these cases, the offspring chromosome is rejected. As stated in the previous subsection,
it is desired to have a maximum of eight new offspring chromosomes per iteration to reduce the
computational time. Since the crossover operations create six offsprings, the mutation operation
can create two offsprings. Therefore, two random chromosomes are selected which genes undergo a
mutation with a probability of 1

18 . Whenever none of the genes undergoes a mutation, the process
is repeated until at least one gene in the chromosome undergoes a mutation.

7.2.6 Termination criteria

At some point, the population’s best fitness value converges. In other words, the best solution
that is found per iteration does not improve anymore. At this moment, it is often decided to stop
the algorithm and conclude that the best solution has been found. However, it is not desired to
stop immediately once the solution has not improved for one iteration. It could be, due to the
randomness that is involved, that the solution still improves after a few iterations without any
improvements. Therefore, the algorithm is only stopped once the iteration has not improved over
ten successive iterations.
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Results

The models regarding the stocking/non-stocking decision and safety stock coverage levels that
were described in the four previous chapters have been executed and tested using the simulation
model. This chapter describes the results of the proposed models. The first section describes
the results of the stocking/non-stocking decision. Hereafter, the results regarding the safety stock
heuristic and RCGA are described in the second and third sections.

8.1 Stocking/non-stocking decision

As has been explained at the beginning of Chapter 6, the exact safety stock coverage levels that
were proposed by the IP model are not used (i.e., they are only used to approximate the costs that
the IP model used to make the stocking/non-stocking decision). Moreover, the SnoS heuristic
does not propose any safety stock levels. Hence, in order to enable a comparison between the
two methods and evaluate the proposed stocking/non-stocking policies in isolation from the safety
stock coverage levels improvements that are proposed in Chapters 6 and 7, the current safety stock
settings are used. This implies that for every part set to stocking by the IP model or SnoS, the
safety stock coverage is determined using the data from the last rolling year on the number of
hits and COGS (see section 1.5). Note that if a stocking option is selected, that implies that one
warehouse has to store for multiple warehouses. In this case, the sums of the hits and COGS of
all SKUs stored at the warehouse determine the safety stock coverage level.

Recall that in the current policy, the only stocking option in which there is shared inventory
is the global stocking option in Budapest. In this stocking option, the aggregated European de-
mand is relatively low. If this were not the case, the item would have become stocking in one of
the warehouses based on its regional number of order hits in the last rolling year. Because of the
relatively low aggregated demand, the globally stocked items are stocked via a base-stock policy
with base-stock level 2 or 4 (see section 1.5). However, the IP model’s stocking options contain
multiple options with a shared inventory. In these options, it is not always the case that the
aggregated demand is relatively low. For example, the IP model can decide to stock the demand
for the warehouse of Madrid in Eindhoven for a particular item. The expected demand in Madrid
is likely relatively low in this case (otherwise, this stocking option would yield high transshipment
costs, and the IP model would not choose it). If the demand in Eindhoven is relatively high,
stocking this item via a base-stock policy with a base-stock level of 2 or 4 is inefficient. The
base-stock policy does not consider the forecasts and only orders when the physical inventory level
drops below 2 or 4. When the lead time and demand are relatively high, the item will often be
out of stock. Therefore, all items that the IP model stocks are assumed to be controlled via an
(R, s, nQ)-policy. For the SKUs for which there were no historical forecasts available, the histor-
ical forecasts were obtained using the assumption explained in section 3.1.2 (i.e., using exponential
smoothing with a smoothing constant of 0.1).
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8.1.1 Group A and B items

The first step in the stocking/non-stocking policy that is proposed is to filter out the items that
had 0 hits in every warehouse or strictly more than five order hits in every warehouse (see Figure
4.1). These items are referred to as group A items in the remaining part of this thesis. The other
items in the product portfolio of PACCAR Parts are referred to as group B items. Note that for
part A items, the stocking decision is the same as in the current situation. In other words, the
performances of the part A items are the same for the current and proposed stocking policies.
The differences in performance between the proposed stocking policies and the current stocking
policy can be identified by simulating the items in group B. Table 8.1 displays that the fraction
of total costs regarding items in group B is relatively high compared to its contribution to the
PACCAR Parts European fill rate (i.e., fraction of order lines). Although this is an already known
characteristic of the spare parts industry, it demonstrates the importance of considering the items
in group B.

Fraction of total order lines Fraction of total costs
Group A Group B Group A Group B

2019 0.863 0.137 0.641 0.359
2020 0.866 0.134 0.617 0.383
2021 0.867 0.133 0.705 0.295

Table 8.1: Distribution of number of total order lines and total costs between group A and B

8.1.2 PACCAR Parts fill rates

The target PACCAR Parts fill rates are parameters that must be set before the IP model can
be executed. Recall that the cost approximations rely on empirical demand and lead time data
from the last rolling year. Also, recall that this empirical data may not fully represent SKUs
with a relatively low number of observations. For this reason, the actual PACCAR Parts fill rate
performances are expected to be worse than the PACCAR Parts fill rate performances that the
IP model expects. For this reason, the target PACCAR Parts fill rates used in the IP model are
somewhat higher than the actual desired PACCAR Parts fill rates. By experimenting with several
values for the target PACCAR Part fill rates, it was observed that the difference between the
expected and actual PACCAR Parts fill rates is approximately 1%. For this reason, the target
aggregated PACCAR Parts fill rates that are set in the IP model, are equal to the current simu-
lated performances (see section 3.3) plus an additional 1%.

Although the IP model only considers the items in group B, the aggregated PACCAR Parts
fill rate targets depend on the items in groups A and B. In other words, the higher the PACCAR
Parts fill rates of the items in group A, the lower the PACCAR Parts fill rates in group B need
to be to obtain the aggregated PACCAR Parts fill rate levels. Therefore, the IP model is run for
three different scenarios for the PACCAR Parts fill rates of the items in group A. In scenario 2,
the PACCAR Parts fill rate performances of group A are equal to the current performances of
items in group A. In scenario 1 and 3, these performances are decreased and increased by 0.1%
respectively (see Appendix F for the exact targets that are used).

8.1.3 IP validation

In order to validate the IP model and the cost approximations on which it is based, the IP output
values for the PACCAR Parts fill rates, and objective function are compared with the values that
the simulation model obtained. Table 8.2 shows the validation data of the IP model for 2019 for
the items in group B. The validation for the data sets of 2020 and 2021 can be found in Appendix
G. From these tables, the same conclusions can be derived as can be from this table.
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Firstly, it can be observed that the individual PACCAR Parts fill rates are met relatively eas-
ily in the IP model. For the low-demand items in group B, the savings that can be made by
pooling the inventory across several warehouses do not weigh up against the extra costs needed
for transshipments. In other words, it is always cheaper to store the demand for a particular item
in warehouse w, in warehouse w itself rather than storing this demand in one of the other ware-
houses. This implies that the total warehouse capacity is always used for all warehouses. Because
of this, the individual PACCAR Parts fill rates are met relatively easily, and the bottleneck is
the PACCAR Parts European fill rate. Secondly, it can be noted that the PACCAR Parts fill
rates that the IP model obtains are somewhat lower than those that the simulation model obtains.
These differences can be explained by the empirical demand and lead time distributions from the
last rolling year that are used. This also explains the higher costs that the simulation model
obtains. These are mainly due to the extra transshipment costs that are caused by the differences
between the expected and actual observations of the demand and lead times.

Scenario
1 2 3
Target IP Sim Target IP Sim Target IP Sim

PACCAR Parts
fill rates
for B items

European 0.886 0.886 0.878 0.880 0.880 0.873 0.874 0.874 0.868

Eindhoven 0.847 0.862 0.839 0.841 0.856 0.831 0.835 0.892 0.828
Madrid 0.795 0.831 0.790 0.788 0.828 0.784 0.782 0.819 0.779
Leyland 0.807 0.866 0.795 0.801 0.857 0.793 0.795 0.855 0.788
Budapest 0.867 0.875 0.856 0.861 0.925 0.853 0.855 0.922 0.850

Total costs
per year
for part B items
(×1000e)

2431 2909 2296 2729 2228 2667

Table 8.2: Validation of IP model for data of 2019

8.1.4 Analysis

Eventually, the IP model allocated 1 out of the 92 stocking options to every part that is considered
in the IP model. Figure 8.1 compares the allocation in the current situation with the allocation
proposed by the IP model for 2019 for the different scenarios of the PACCAR Parts fill rates of
items in group A. In Appendix H, the same figures are displayed for 2020 and 2021. From these
figures, the same conclusions can be drawn. Note that stocking option 0 (non-stocking in every
warehouse) is not included in the figures for clarity. This stocking option has a high frequency
and therefore decreases the clarity of the other bars in the chart. In addition, they do not add
a large amount of added value to the comparison between the two situations since the frequency
that this stocking option is selected, is more or less the same for both situations. Note that in the
current situation, stocking options 17 up to and including 91 did not exist. Only stocking option
92 (global stocking in Budapest) was available.

The stocking options that are interesting for this analysis are highlighted by the numbers of
the stocking options in the graph in Figure 8.1. In addition, Table 8.3 explains these stocking
options. The most important observations that can be derived from stocking option comparison
are listed below:

• It can be observed that the lower the expected PACCAR Part fill rates of items in group
A, the more stocking options that involve transshipments are selected (i.e., stocking options
from stocking option 16 on-wards). This makes sense since more hits should be satisfied in
group B when fewer hits are satisfied in group A. At the same time, the same number of
total order hits should be met to satisfy the PACCAR Parts fill rates constraints. In order
to still respect the capacity constraints, more items are forced to have shared inventory by
the IP model.
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• Stocking options 2 and 14 are chosen fewer times by the IP model compared to the current
situation. On the other hand, stocking options 22, 24, and 56 are chosen more often. This
implies that the IP model often chooses to have a shared inventory between Eindhoven and
Leyland. An explanation for this can be that it is relatively cheap to transship between
Eindhoven and Leyland. Moreover, Leyland and Eindhoven relatively have the highest
demand rates. This implies that stocking in one of these warehouses is often desired since
this minimizes the amounts to transshipment.

• Due to the capacity constraints, not all items can be stored in Eindhoven or Leyland. The
warehouse in Budapest relatively has the biggest capacity compared to its demand. For this
reason, stocking options 56, 62, and 87 have a high occurrence frequency in the IP solution.
In these options, Budapest stores the demand for Eindhoven and/or Leyland. On the other
hand, stocking option 92 is not highly frequent in the IP solution. This holds since this
option assumes that demand is stocked for all warehouses. Since the warehouse in Madrid
has a relatively low demand, it is not common that there was demand in all of the warehouses
for items in group B. Hence, stocking option 92 has a low frequency of occurring.

• The stocking options in which Madrid stocks demand from other warehouses are selected
seldom by the IP model. This holds because the demand in Madrid is relatively low, and
the capacity in this warehouse is relatively tight.

Stocking warehouse
Option EHV MAD LEY BUD

2 EHV
14 LEY
16 BUD
22 EHV-LEY
24 EHV-LEY BUD
45 LEY-EHV
56 BUD-EHV
62 BUD-LEY
87 BUD-LEY-EHV
92 BUD-EHV-MAD-LEY

Every row in this table displays one of the stocking opportunities for a specific item. Per warehouse, it is displayed
for which warehouses the demand is stocked. Note that white space in a cell indicates that the item is non-stocking
for this warehouse. For example, consider option 24. The interpretation of this stocking option is as follows:
Eindhoven stocks the demand for itself and Leyland, Budapest stocks its own demand and the demand for Madrid
is assumed to be lost.

Table 8.3: Relevant stocking opportunities for IP solution
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 8.1: Frequency of stocking options for different scenarios of the PACCAR Parts fill rate of
items in group A for 2019
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8.1.5 Performances

This subsection reflects on the performances of the current situation, IP model, and SnoS heuristic.
Recall that for group A items, there are no differences between the current situation, the IP model,
and the proposed heuristic. The performances of the items in this group are displayed in Appendix
K. The performances of the IP model and SnoS heuristic can be compared to the current situation
by considering the items in group B. Figure 8.2 displays the PACCAR Parts European fill rate
against the total yearly costs for every policy. Note that the IP solution has three dots in the
graph, these dots reflect the different scenarios for the expected PACCAR Parts fill rates for items
in group A. It can be observed that the IP solution outperforms the current policy in terms of costs
and PACCAR Parts European fill rate. On the other hand, the simple heuristic also outperforms
the current situation. However, the SnoS heuristic only optimizes a part of the total problem
which results in a worse performance compared to the IP solution.

(a) 2019 (b) 2020

(c) 2021

Figure 8.2: PACCAR Parts fill rate versus total costs for the tested stocking policies

In order to study the performances in more detail, the PACCAR Part fill rates and the costs of
the policies are analyzed in more detail. In Appendix I, the detailed performances for the data
sets of 2019, 2020, and 2021 are displayed. From these tables, the same conclusions can be drawn.
It can be concluded that the higher the value of the expected PACCAR Parts fill rate for items in
group A, the lower the PACCAR Part fill rates are for items in group B. This makes sense since,
eventually, a total PACCAR Parts fill rate needs to be obtained by the model. For this reason, a
higher level of expected PACCAR Parts fill rates for items in group A means that fewer hits need
to be satisfied by the items in group B. This results in lower inventory costs since fewer items are
stocked in group B. Considering the transshipment costs, it is somewhat more complicated. On the
one hand, there is less inventory available to transship. On the other hand, more transshipments
are needed since there are more warehouses with shared inventory in case of a higher value of the
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expected PACCAR Parts fill rate for items in group A. Nevertheless, we see a slight decrease in the
transshipment costs when the value of the expected PACCAR Parts fill rate for items in group A
increases. This implies that the first-mentioned effect outweighs the second one. Another relevant
observation deals with the average inventory values in the warehouses. If the IP model is compared
to the current situation, the inventory value in Budapest is increased while the inventory value
in Eindhoven and Leyland is decreased. In general, more expensive parts are more expensive to
transship. This holds since they are often bigger and heavier. In section 8.1.4, it was concluded
that the IP model tends to swap inventory with high expected transshipment costs from Budapest
to Eindhoven and Leyland. From these two observations together, it can be concluded that it is
often more efficient to stock relatively cheap items with high demand in Leyland and Eindhoven.
While in this case, the relatively expensive items with a low demand can be stored in Budapest.
The same effect is observed in the solution that is obtained by the heuristic. Lastly, it is observed
that the total transshipment costs decrease significantly. This emphasizes that it is worthwhile to
consider the expected transshipment costs when making a stocking decision.

8.2 Safety stock heuristic

As explained in Chapter 5, it is hard for PACCAR Parts to implement the IP model in their
planning system. It is more likely that the SnoS heuristic will be implemented. For this reason,
the safety stock heuristic and GA are tested using the stocking/non-stocking decision obtained by
applying the SnoS heuristic.

The safety stock heuristic is executed for different values of the target PACCAR Parts European
fill rate. Again, the PACCAR Parts European fill rates are set 1% higher than the actual desired
PACCAR Parts European fill rates. Figure 8.3 displays the outcomes of the safety stock heuristic
for the different settings for the target PACCAR Parts European fill rate for the different years.
The figure compares the PACCAR Parts European fill with the total costs, including the invent-
ory and transshipment costs. It can be observed that the safety stock heuristic outperforms the
current policy. The detailed data for 2019, 2020, and 2021 are displayed in Appendix L. Based on
the analysis of these tables, the following observations are made:

• The transshipment costs that are obtained when the safety stock heuristic is implemented
are higher than in the current situation. Recall that the safety stock heuristic decides on
an item’s safety stock level based on its demand distributions from the last rolling year.
Especially for items with relatively low demand, it is likely that this distribution is not
very accurate. As a result, the safety stock levels for some parts in some warehouses are
either underestimated or overestimated. In order to compensate for this, transshipments are
needed. This also explains the observation that the PACCAR Parts European fill rates that
were obtained by simulation are lower than the target PACCAR Parts European fill rate
levels that were expected by the safety stock heuristic.

• The PACCAR Parts regional fill rate of the warehouse in Madrid is relatively low compared
to the other warehouses. The same holds for the average inventory value. Recall that the
safety stock heuristic only optimizes the aggregated PACCAR Parts European fill rate. The
warehouse in Madrid has relatively the lowest demand compared to the other warehouses.
Due to this, there are fewer demand observations for most of the items in Madrid compared
to the other warehouses. Therefore, the demand variability in Madrid is higher than in the
other warehouses. This implies that more safety stock is needed in Madrid to obtain the
same PACCAR Parts fill rate level as in other warehouses. In other words, increasing the
inventory in Madrid is more expensive to obtain the same service level as in other warehouses.
Hence, the safety stock heuristic prefers to increase the inventory in the other warehouses
first. This effect is strengthened by the fact that lower demand results in a lower weight to
the total PACCAR Parts European fill rate. In other words, the ’bang for the buck’ that
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is the driving force behind the greedy approach is often lower for items stored in Madrid’s
warehouse.

(a) 2019 (b) 2020

(c) 2021

Note: The different orange dots in the graph represent the different outputs that were obtained for different values
of the target PACCAR Parts European fill rate. These values can be found in Appendix F.

Figure 8.3: PACCAR Parts European fill rate versus total costs for current situation and safety
stock heuristic

8.3 Real-coded genetic algorithm

In contrast to the safety stock heuristic, the RCGA takes into account both the European and
individual PACCAR Parts fill rates. In order to obtain a set of Pareto-optimal solutions, the
proposed RCGA is executed for different values of the target PACCAR Parts fill rates. The
different targets for which the RCGA is executed are set based on the current performances of the
stocking policy. Namely, different percentages of the current PACCAR Parts fill rates are taken
to set the target PACCAR Parts fill rates that are used in the RCGA. The percentages that are
tested are 99.50%, 99.75%, 100%, 100.25%, 100.50%, 100.75%, 101%, and 101.25%. Note that a
percentage that is higher than 100% implies that higher target PACCAR Parts fill rates are set
compared to the current performances.

8.3.1 Analysis of generations

Recall that the RCGA is executed on five different data sets that contain a random sample of 10%
of the stocking parts. Figure 8.4 displays the evaluation of the best fitness value for each data set
over the generations. This figure is based on the runs of 2019, where the target PACCAR Parts fill
rates are equal to the current targets (i.e., 100% of the current PACCAR Parts fill rates). It can
be seen that the RCGA makes relatively big improvements in the first iterations of the algorithm.
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During the algorithm’s execution, it was observed that the big improvements were caused by the
crossover operators rather than the mutation operators. This is in line with the findings of Du
and Swamy (2016). Nonetheless, the mutation operators often caused small improvements that
can be observed towards the end of the algorithm.

Figure 8.4: Example of best fitness value under different generations

(a) 2019 (b) 2020

(c) 2021

Note: The different blue dots in the graph represent the different outputs that were obtained for different values
of the target PACCAR Parts fill rates. These targets are set as a percentage of the current PACCAR Parts fill
rates. From left to right these percentages were: 99.50%, 99.75%, 100%, 100.25%, 100.50%, 100.75%, 101% and
101.25%.

Figure 8.5: PACCAR Parts European fill rate versus total costs for current situation, safety stock
heuristic, and RCGA
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8.3.2 Performances

In Figure 8.5, the results of the RCGA are added to the results of the current situation and the
safety stock heuristic. In this way, the three policies can be compared. The detailed results of
the RCGA are displayed in Appendix M. Additionally, the proposed safety stock coverage levels
per class are displayed in Appendix N. It can be seen that the RCGA outperforms the safety
stock heuristic and the current policy. Recall that a drawback of the safety stock heuristic was
Madrid’s low PACCAR Parts regional fill rate. In the RCGA, constraints were set on these regional
PACCAR Parts fill rates. For this reason, the PACCAR Parts regional fill rate of Madrid that the
RCGA obtains is significantly higher than that obtained by the safety stock heuristic. Because of
this, fewer transshipments were needed to Madrid in the case of the RCGA. This resulted in lower
transshipment costs for the RCGA compared to the safety stock heuristic.

8.3.3 Sensitivity analysis stocking/non-decision

As has been explained before, it is more likely that PACCAR Parts will implement the SnoS heur-
istic in the short term than the IP model due to extra investments that are needed in the planning
system. For that reason, the stocking/non-stocking decision used to test the RCGA is set to the
one proposed by the SnoS heuristic. The sensitivity analysis in this section aims to investigate
the potential savings that can be obtained when the IP model solution is used as an input for
the RCGA instead of the SnoS heuristic. In this way, PACCAR Parts can decide whether the
costs of implementing the IP model outweigh its benefits. The analysis is performed on the data
set of 2019, where the target PACCAR Part fill rates are set equal to the current performances.
Additionally, The IP solution of scenario two is used. Recall that the expected PACCAR Parts
fill rate for items in group A was equal to the current performances in this scenario.

In Table 8.4, the total costs that are obtained by the RCGA are displayed for the cases in which
the SnoS heuristic and IP are used to determine the stocking/non-stocking decision. In both
cases, the PACCAR Parts European fill rate is equal to the PACCAR Parts European fill rate
obtained in the current situation (96.5%). It can be observed that an additional cost saving of
71478 euro can be obtained when the IP model is used to determine the stocking/non-stocking
decision instead of the SnoS heuristic.

SnoS IP Difference
Total costs per year (e) 7535337 7463858 71478
Cost reduction compared to current situation 5.44% 6.34% 0.90

Table 8.4: Total costs for RCGA when SnoS and IP are used

In Appendix M, the detailed results of the sensitivity analysis that is described in this subsection
are displayed in Table M.5. Additionally, Figure 8.5a is expanded by the result of the RCGA that
is obtained when the IP model is used for the stocking/non-stocking decision (see Figure M.1).
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Conclusion

This chapter draws an overall conclusion of this research and answers the main research question
on how PACCAR Parts can improve its current stocking policy. Additionally, recommendations
are given to PACCAR Parts on how to implement the suggested solutions taking into account
the practical challenges. Moreover, conclusions on the contribution to the scientific literature are
given. Lastly, the main limitations of this researcher are discussed based on which directions for
future research are suggested.

9.1 Conclusion

This research has been conducted at the Demand Planning Department of PACCAR Parts Europe.
Eventually, it was the goal to improve the current spare parts stocking policy of the European
warehouses of PACCAR Parts. In order to achieve this, the problem has been split up into two
parts. Firstly, the stocking/non-stocking decision per item per warehouse was made. Hereafter,
the near-optimal safety stock coverage levels had to be determined. The complexity of this study
came with the allowance of transshipments, capacity restrictions, high levels of supply variability,
seasonality, and lumpy or intermittent demand patterns.

For each part in the product portfolio of PACCAR Parts, 92 different stocking options were
defined. For each of these 92 stocking options, cost approximations that take into account the
expected inventory and transshipment costs were estimated for different scenarios of the individual
PACCAR Part fill rate levels per part. Hereafter, an IP model was proposed that assigned one of
the 92 stocking options to each part. The IP model minimized the total costs such that constraints
regarding the warehouse capacities and PACCAR Part fill rate levels were respected. Eventually,
the outcomes of the IP model were analyzed such that a heuristic was proposed that is more
convenient for PACCAR Parts to implement in their planning system.

After the stocking/non-stocking decision was made, two approaches were tested to determine the
safety stock coverage levels. Firstly, the safety stock heuristic that is proposed by Donselaar, van
et al. (2021) was tested. This heuristic determines optimal reorder levels for each SKU individually
by constraining on a minimum target PACCAR Parts European service level. It was concluded
that the empirical demand and lead time distributions used to estimate the PACCAR Part fill
rates and expected inventory costs yielded somewhat inaccurate results for SKUs with a low num-
ber of empirical demand and lead time observations. Lastly, the PACCAR Parts individual fill
rate for the warehouse in Madrid was relatively low due to its low contribution to aggregated
service level and high level of demand variability. The second approach for determining the safety
stock coverage levels started with a classification. The SKUs were classified on the service level
versus cost trade-off and the total variability. A safety stock coverage level was determined for
each category using an RCGA. Simulation results showed that this approach for determining the
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safety stock coverage levels outperformed the safety stock heuristic and PACCAR Parts’ current
approach for determining safety stock coverage levels. When the SnoS and the RCGA are imple-
mented, Table 9.1 shows the improvements in total costs and PACCAR Parts European fill rates
that were obtained per year. The total cost improvements display the improvements that can be
obtained compared to the current situation when the same PACCAR Parts European fill rate is
obtained (vice versa for the PACCAR Parts European fill rate improvements).

2019 2020 2021
Cost improvement 5.5% 4.7% 4.4%
PACCAR Parts European fill rate improvement (in percentage point) 0.68 0.74 0.78

Table 9.1: Improvements in costs and PACCAR Parts European fill rate when SnoS heuristic and
RCGA are implemented

9.2 Recommendation

Based on the outcomes of this research, a set of recommendations are proposed for the Demand
Planning Department of PACCAR Parts. The first two recommendations deal with the imple-
mentation of the proposed methods regarding the stocking policies. Hereafter, two general recom-
mendations are explained that can be used in PACCAR Parts’ operations and analyses.

• Gradually implement the SnoS heuristic or IP model.
This research proposed two methods for improving the stocking/non-stocking decision. Ideally,
the IP model is implemented to make this decision since it can save over 70,000 euros per
year when it is used in combination with the RCGA compared to the situation in which the
RCGA is used in combination with the SnoS heuristic. However, due to its complex calcu-
lations and required planning system changes, it may be more convenient to implement the
SnoS heuristic in the short term. Nevertheless, in both cases, the implementation has to be
performed gradually. This holds since the items that are currently occupying the warehouses
have to be taken into account when a new policy is implemented. It is suggested that once
a month, the stocking/non-stocking is made (by running the IP model or by executing the
safety stock heuristic). By running the model once per month, the newest sales trends of
the past year are taken into account. This way, a list with the optimal item allocation per
warehouse is obtained every month. From this, per warehouse, it can be derived which items
are stocked, although this is in contrast with the optimal item allocation. Additionally, per
warehouse, which items are not stocked can be derived, although this is in contrast with the
optimal item allocation. Whenever an item that is set to non-stocking becomes out of stock
in a particular warehouse, a spot is freed up, and it can be filled by one of the items that
still needs to be stocked. In order to fill this spot, it is suggested to prioritize items stocked
in none of the warehouses over items already stocked in one of the other warehouses. In
this way, the PACCAR Parts European fill rate is maximized. Furthermore, no unnecessary
transportation costs are made by gradually shifting from the current SKU allocation per
warehouse to the proposed one.

• Gradually implement the proposed safety stock classification and its safety stock
coverage levels.
It is suggested to implement the proposed classification together with its corresponding
safety stock coverage levels. Unlike the stocking/non-stocking decision, this implementation
can be performed immediately. Namely, every time an item is ordered, its safety stock can
be determined by the proposed policy. However, this approach may be too radical. It is
suggested first to implement the proposed safety stock policy on a small set of SKUs. By
analyzing the performances of this small set, it can be checked whether the simulated results
match the results in real life. This way, a gradual implementation is enabled, and minor
adjustments can be made to the proposed safety stock coverage levels if necessary. It should
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be noted that this small set of SKUs should have the same distribution over the classes as
the distribution that has been proposed in this thesis. This holds since the model is an
aggregated model. Distorted results can be obtained whenever the distributions over the
classes are not kept the same.

• Use the actual inter-warehouse lead times to analyze and execute the current
stocking policy.
It was shown in this research that the lead times between the warehouses are, in reality,
not equal to 14 days. By considering the actual inter-warehouse lead times, more accurate
analyses can be performed, and more reliable order suggestions can be calculated.

• Take into account the costs of transshipments when analyzing or evaluating the
performances of the stocking policy.
Currently, transshipment costs are not considered in the analyses and evaluation of the
stocking policies. This research showed that the transshipments’ costs contribute more than
30% to the total costs. It is, therefore, crucial to take into account these costs in order to
make an accurate and reliable costs analysis.

9.3 Contribution to Scientific Literature

This thesis contributed to the scientific literature in multiple fields. Below is how this thesis
explicitly contributes to the existing literature.

• Stocking/non-stocking decision in a multi-item, multi-location setting with ca-
pacity constraints.
Most studies in the literature that make stocking/non-stocking decisions for multi-item
problems are doing this for single location problems. The papers that study multi-item,
multi-location problems use Lagrangian-based heuristics and assume that demand is Pois-
son distributed (Archibald et al., 1997; Wong et al., 2005). Furthermore, these papers do not
take into account warehouse capacity constraints. This thesis contributes to the literature
because it proposes a stocking/non-stocking model for multi-item, multi-location problems
with capacity constraints. The model used in this thesis uses empirical discrete demand dis-
tributions and the PACCAR Parts fill rate definition in case of an (R, s, nQ)-policy. However,
with some minor adjustments in the service level and cost approximations, it can be used
for other cases with other demand distributions or service level definitions.

• Order fill rate.
PACCAR Parts uses the Order Fill Rate (OFR) as a definition for their service levels rather
than the Volume Fill Rate (VFR). The OFR is less commonly used in practice, and less
research has been performed on it compared to the VFR. Larsen and Thorstenson (2008)
derived formulas for the OFR in case of discrete demand and when a base-stock policy is used
to control the inventory. On the other hand, Donselaar, van and Broekmeulen (2014) derived
formulas for the VFR in case of discrete demand when an (R, s, nQ)-policy is used to manage
the inventory. This paper combined both studies by deriving an expression for the OFR in
case of discrete demand and an (R, s, nQ)-policy to control the inventory. Additionally, a
recursive expression was derived that enables an efficient calculation of the minimum required
safety stock levels for the different minimum required OFR levels. Moreover, Wingerden,
van et al. (2016) studied which classification criterion captures the trade-off between service
level and costs the best when the VFR is used. In this thesis, the classification criterion that
is proposed by Wingerden, van et al. (2016) is adjusted to the OFR case.

• Real-Coded Genetic Algorithm with ordered chromosomes, problem-oriented
crossovers, and fitness value calculation by simulation.
For the determination of safety stock levels in complex problems like the problem at PAC-
CAR Parts, it is common in the literature to use RCGA to determine the optimal safety stock
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levels (Nakandala et al., 2016; Yu et al., 2020; Feng et al., 2017; Gu et al., 2020; Hochmuth
& Köchel, 2012). However, these studies assume known demand distributions and derive
analytical formulas to calculate the fitness values of the chromosomes. In this thesis, simu-
lation is used to calculate the fitness values of the chromosomes. This enables the RCGA to
examine the fitness value of the chromosomes without making questionable assumptions re-
lated to seasonality, transshipments, or known demand and lead time distributions. In order
to limit the computational time of an RCGA with simulation fitness evaluation, the number
of iterations has to be minimized explicitly. Therefore, this thesis proposed ordered chro-
mosomes in combination with linear crossover operators. Furthermore, a problem-oriented
crossover operator is proposed that can be used to perform efficient crossovers operations.
The combination of efficient crossover operators and the way how the chromosomes are cre-
ated such that the solution space is limited to feasible and logical solutions enables one to
use simulation as fitness value evaluation in safety stock level optimization.

9.4 Limitations & Future Research

This section describes the main limitations of this research. Based on these limitation, directions
for future research are proposed.

• The proposed IP model does not take into account the current situation.
The stocking/non-stocking decision that the IP model makes does not take into account the
current allocation of the items across the warehouses. In section 9.2, an implementation
method is explained that enables PACCAR Parts to implement the IP model gradually. A
drawback of this method is that it takes time for items to get out of stock before new items can
be stocked. In order to overcome this, a suggested direction for future research is to consider
the current situation in the IP model. For example, this can be done by extending the IP
model with additional penalty costs for stocking options that suggest a stocking/non-stocking
decision per item per warehouse that deviates from the current situation. This way, stocking
options that align with the current situation become more attractive. Accordingly, the IP
model only selects stocking options that only yield significant cost reductions compared to
the current situation.

• The empirical distributions for some items rely on very few demand observations.
The expected PACCAR Parts fill rate and expected inventory costs for a certain reorder
level are calculated using the empirical demand distributions from the last rolling year.
The demand for the last rolling year is considered in order to take into account the newest
sales trends. The disadvantage of this approach is that for some items, only a few demand
observations can be made in one year. Therefore, the extent to which these empirical demand
distributions are accurate is limited. Future research could investigate how the distributions
of these demands can be described more accurately. For example, analyses can be performed
on whether there have been many variations in the sales patterns of certain items over
the years. If the demand for an item was relatively stable over the years, more accurate
distributions could be found by extending the historical data horizon to more than one year.

• The number of items that the RCGA can consider is relatively low.
The proposed RCGA uses simulation to calculate the fitness values. For every iteration in
the algorithm, new simulations have to be run to calculate the fitness values of new offspring
chromosomes. In order to limit the computational time of the algorithm, only a small set
of items was used in this simulation in this research. If more items could be considered, the
results would be slightly more accurate. Therefore, a proposed direction for future research
is to find ways to decrease the computational time of the RCGA. This can be obtained by
speeding up the simulation model or finding genetic operators that converge to the near-
optimal solution faster.
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• The parameters of the RCGA are not fully optimized.
The parameters of the RCGA in this research are not fully optimized. Du and Swamy
(2016) state that it is convenient to try out different RCGA parameters in order to optimize
the obtained solution fully. In this research, the extent to which parameter tuning has
been performed is limited due to the high computational time involved. A direction for
future research comes with tuning the parameters in the RCGA. For example, Figure 8.4
suggests that the optimal solution can be improved if the termination criterion is set less
strict. Nonetheless, this parameter tuning is expected only to improve the solution to a small
extent. For PACCAR Parts, these minor improvements are not considered to outweigh the
additional computational and research time. However, this direction for future research may
be interesting from an academic point of view.

• Proactive transshipments are not considered in this research.
In the literature on transshipment inventory models, emergency transshipments are also
known as reactive transshipments. These transshipments are only allowed once demand
arrives at a particular location that has no stock of the demanded item (Paterson et al.,
2011). On the other hand, proactive transshipments are allowed at any moment in time.
However, no proactive transshipments are facilitated by PACCAR Parts currently. For this
reason, they are not considered in this research. Nevertheless, proactive transshipments can
have a potential benefit for PACCAR Parts. The potential advantage for the warehouse
that sends the transshipped items is that it can reduce its inventory costs by losing excess
inventory. For the receiving warehouse, the proactive transshipments can reduce ordering
costs and lead time. Hence, implementing proactive transshipments can be the subject of
future research.
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Appendix A

Flowchart simulation model

Figure A.1: Flowchart of the simulation

IOH: Inventory On Hand at the beginning of the period, B: Outstanding backorders, IT: In Transit position, F:
Forecasted demand during lead time + review period, ss: safety stock level, OQ: Order Quantity
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Appendix B

Simulation model validation

In order to reflect on the performance and reliability of the simulation model compared to the
actual situation, a validation is performed. For this, the actual data on the obtained KPIs are
retrieved from the PACCAR Parts database. The validation of the simulation model based on the
PACCAR Parts fill rates and inventory values can be found in Tables B.1 and B.2 respectively.
Note that for measurement of the actual performances, the same items are considered as have
been considered in the simulation (i.e. not taking into account the parts that were removed as has
been explained in section 3.1.1).

2019 2020 2021
Actual Simulation Actual Simulation Actual Simulation

Inc. T Exc. T Inc. T Exc. T Inc. T Exc. T
European 0.987 0.973 0.966 0.985 0.972 0.962 0.962 0.964 0.949
Eindhoven 0.970 0.955 0.942 0.962 0.952 0.937 0.970 0.938 0.918
Madrid 0.940 0.936 0.915 0.932 0.934 0.908 0.935 0.924 0.894
Leyland 0.966 0.953 0.935 0.950 0.950 0.929 0.921 0.943 0.914
Budapest 0.944 0.958 0.943 0.943 0.953 0.933 0.905 0.939 0.916

Inc. T: including templates. Exc. T: excluding templates

Table B.1: PACCAR Parts fill rate validation

2019 2020 2021
Actual Simulation Actual Simulation Actual Simulation

Inc T Exc T Inc T Exc T Inc T Exc T
European 55653 56014 46648 54278 67811 45736 60373 68371 56431
Eindhoven 34044 33206 28849 33907 46642 29485 38152 43792 37896
Madrid 1644 1843 1439 1669 1763 1351 2142 2272 1704
Leyland 10617 10878 8308 9940 10721 7978 10055 11843 8462
Budapest 9348 10086 8053 8762 8685 6922 10023 10464 8370

Inc. T: including templates. Exc. T: excluding templates

Table B.2: Average inventory value validation (in thousands of euros)

From the validation, it can be concluded that the simulation model yields somewhat worse per-
formances compared to the actual situation regarding the PACCAR Parts fill rate. Nevertheless,
the inventory values that are obtained by the simulation model without templates are signific-
antly lower than the actual values. This can be declared by the templates that were added and
the manual adjustments that were made by the inventory planners in that specific year. The
simulation model with templates still yields worse PACCAR Parts fill rate results compared to
the actual situation. On the other hand, the inventory is higher compared to the actual situation.
Only for the data set of 2021, a slightly higher PACCAR Parts fill rate is obtained compared to
the actual situation. As stated before, templates are applied to poorly performing products. Since
the current templates are used, they likely are the most applicable to the relatively newest data
set (i.e. 2021). Even though, the increase in PACCAR Parts fill rate is relatively low compared to
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APPENDIX B. SIMULATION MODEL VALIDATION

the increase in average inventory value. Hence, it is concluded that the current templates are not
representative and applicable to the older data sets. Therefore, the templates are not considered
in the rest of this study.
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Appendix C

Sensitivity analysis lead times

In section 2.3, it was concluded that assuming the inter-arrival times between the warehouses to
be always equal to 14 days is inaccurate. In order to examine the effects of this assumption, the
simulated performances of the current lead time assumption are compared with the situation in
which the expected inter-warehouse lead times are equal to the average values that are displayed
in Table 2.3. The results of these simulations are displayed in Table C.1. Note that the simulation
model without templates is used for this comparison.

2019 2020 2021
Current Proposed Current Proposed Current Proposed

PACCAR Parts
fill rate

European 0.966 0.965 0.962 0.962 0.949 0.948
Eindhoven 0.942 0.941 0.937 0.937 0.918 0.917
Madrid 0.915 0.906 0.908 0.899 0.894 0.884
Leyland 0.935 0.933 0.929 0.927 0.914 0.912
Budapest 0.943 0.940 0.933 0.931 0.916 0.911

Average inventory
value
(×1000e)

European 46648 45900 45736 45177 56431 55697
Eindhoven 28849 28642 29485 29312 37896 37737
Madrid 1439 1299 1351 1258 1704 1624
Leyland 8308 8143 7978 7840 8462 8267
Budapest 8053 7816 6922 6767 8370 8069

Table C.1: Performances for current and proposed inter-warehouse lead time assumption

From Table C.1, it can be concluded that the average inventory value decreases when the proposed
lead time assumption is adopted. Recall from section 2.3 that the warehouse in Eindhoven is the
biggest supplier for the other warehouses. Also, recall that the actual lead time between Eindhoven
and the other warehouses is on average smaller than 14 days. This explains that the warehouses
in Madrid, Leyland, and Budapest have less inventory using the proposed lead time assumption.
This results in lower inventory costs. On the other hand, the PACCAR Parts fill rates in these
warehouses is somewhat lower. This holds since the extra inventory that was ordered in the
current situation due to the overestimation of the lead time served as extra safety stock. For the
remaining part of this thesis, the proposed lead time assumption is followed (i.e. use the expected
actual lead time to forecast the demand during the lead time plus review period). In this way,
more accurate decisions on the safety stock levels per product can be made.
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Stocking opportunities
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APPENDIX D. STOCKING OPPORTUNITIES

Stocking warehouse

EHV MAD LEY BUD

1
2 EHV
3 EHV MAD
4 EHV LEY
5 EHV BUD
6 EHV MAD LEY
7 EHV MAD BUD
8 EHV LEY BUD
9 EHV MAD LEY BUD
10 MAD
11 MAD LEY
12 MAD BUD
13 MAD LEY BUD
14 LEY
15 LEY BUD
16 BUD
17 EHV-MAD
18 EHV-MAD LEY
19 EHV-MAD BUD
20 EHV-MAD LEY-BUD
21 EHV-MAD BUD-LEY
22 EHV-LEY
23 EHV-LEY MAD
24 EHV-LEY BUD
25 EHV-LEY MAD-BUD
26 EHV-LEY BUD-MAD
27 EHV-BUD
28 EHV-BUD MAD
29 EHV-BUD LEY
30 EHV-BUD MAD-LEY
31 EHV-BUD LEY-MAD
32 MAD-EHV
33 MAD-EHV LEY
34 MAD-EHV BUD
35 MAD-EHV LEY-BUD
36 MAD-EHV BUD-LEY
37 MAD-LEY
38 EHV MAD-LEY
39 MAD-LEY BUD
40 MAD-LEY BUD-EHV
41 MAD-BUD
42 EHV MAD-BUD
43 MAD-BUD LEY
44 MAD-BUD LEY-EHV
45 LEY-EHV
46 MAD LEY-EHV
47 LEY-EHV BUD
48 LEY-EHV BUD-MAD
49 LEY-MAD
50 EHV LEY-MAD
51 LEY-MAD BUD
52 LEY-MAD BUD-EHV
53 LEY-BUD
54 EHV LEY-BUD
55 MAD LEY-BUD
56 BUD-EHV
57 MAD BUD-EHV
58 LEY BUD-EHV
59 BUD-MAD
60 EHV BUD-MAD
61 LEY BUD-MAD
62 BUD-LEY
63 EHV BUD-LEY
64 MAD BUD-LEY
65 EHV-MAD-LEY
66 EHV-MAD-LEY BUD
67 EHV-LEY-BUD
68 EHV-LEY-BUD MAD
69 EHV-BUD-MAD
70 EHV-BUD-MAD LEY
71 MAD-LEY-BUD
72 EHV MAD-LEY-BUD
73 MAD-BUD-EHV
74 MAD-BUD-EHV LEY
75 MAD-EHV-LEY
76 MAD-EHV-LEY BUD
77 LEY-BUD-EHV
78 MAD LEY-BUD-EHV
79 LEY-EHV-MAD
80 LEY-EHV-MAD BUD
81 LEY-MAD-BUD
82 EHV LEY-MAD-BUD
83 BUD-EHV-MAD
84 LEY BUD-EHV-MAD
85 BUD-MAD-LEY
86 EHV BUD-MAD-LEY
87 BUD-LEY-EHV
88 MAD BUD-LEY-EHV
89 EHV-MAD-LEY-BUD
90 MAD-LEY-BUD-EHV
91 LEY-BUD-EHV-MAD
92 BUD-EHV-MAD-LEY

Every row in this table displays one of the stocking opportunities for a specific item. Per warehouse, it is displayed
for which warehouses the demand is stocked. Note that white space in a cell indicates that the item is non-stocking
for this warehouse. For example, consider option 42. The interpretation of this stocking option is as follows:
Eindhoven stocks to own demand, Madrid stocks it own demand plus the demand of Budapest, and the demand of
Leyland is not stocked.

Table D.1: Stocking opportunities
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Appendix E

Recursive equations

As has been stated in section 4.2.1, costs given a minimum individual PACCAR Parts fill rate
per stocking option per part have to be estimated. This can be done by using Equations 4.7 and
4.9. In order to speed up the computational time for finding the minimum s level that satisfied a
certain PACCAR Parts fill rate, a recursive expression for equation 4.7 has been derived:

PACCAR Parts fill rate(s+ 1) =
1

Q

s+Q∑
k=s+1

k−1∑
n=0

P (J ≤ k − n)P (DL+Z = n)

=
1

Q

s+Q−1∑
k=s

k−1∑
n=0

P (J ≤ k − n)P (DL+Z = n)− 1

Q

s−1∑
n=0

P (J ≤ k − n)P (DL+Z = n)

+
1

Q

s+Q−1∑
n=0

P (J ≤ k − n)P (DL+Z = n)

= PACCAR Parts fill rate(s) +
1

Q

s+Q−1∑
n=s

P (J ≤ k − n)P (DL+Z = n)

(E.1)

The same has been done for Equation 4.9:

E[IOH(s+ 1)] =
1

Q

Q−1∑
i=0

s+i∑
d=0

(s+ i− d+ 1)P (Dt = d)

=
1

Q

Q−1∑
i=0

( s+i−1∑
d=0

(s+ i− d+ 1)P (Dt = d) + P (Dt = s+ i)
)

=
1

Q

Q−1∑
i=0

( s+i−1∑
d=0

(s+ i− d)P (Dt = d) + P (Dt = d)
)
+

1

Q

Q−1∑
i=0

P (Dt = s+ i)

=
1

Q

Q−1∑
i=0

( s+i−1∑
d=0

(s+ i− d)P (Dt = d) +

s+i−1∑
d=0

P (Dt = d)
)
+

1

Q

Q−1∑
i=0

P (Dt = s+ i)

=
1

Q

Q−1∑
i=0

s+i−1∑
d=0

(s+ i− d)P (Dt = d) +
1

Q

Q−1∑
i=0

( s+i+1∑
d=0

P (Dt = d) + P (Dt = s+ i)
)

= E[IOH(s+ 1)] +
1

Q

Q−1∑
i=0

s+i∑
d=0

P (Dt = d) (E.2)
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Appendix F

Parameter settings

2019 2020 2021
s 1 s 2 s 3 s 1 s 2 s 3 s 1 s 2 s 3

European (FEUR
A ) 0.990 0.991 0.992 0.988 0.989 0.990 0.979 0.980 0.981

Eindhoven (FEHV
A ) 0.967 0.968 0.969 0.965 0.966 0.967 0.943 0.944 0.945

Madrid (FMAD
A ) 0.935 0.936 0.937 0.929 0.930 0.931 0.919 0.920 0.921

Leyland (FLEY
A ) 0.965 0.966 0.967 0.961 0.962 0.963 0.945 0.946 0.947

Budapest (FBUD
A ) 0.963 0.964 0.965 0.955 0.956 0.957 0.945 0.946 0.947

Table F.1: Settings for PACCAR Parts fill rates of items in Group A per scenario in IP model

s 1 s 2 s 3 s 4 s 5
2019 0.965 0.970 0.975 0.980 0.985
2020 0.965 0.970 0.975 0.980 0.985
2021 0.945 0.950 0.955 0.960 0.965

Table F.2: Target PACCAR Parts European fill rates for safety stock heuristic per scenario

71



Appendix G

Validation IP model for 2020 and
2021

Scenario
1 2 3
Target IP Sim Target IP Sim Target IP Sim

PACCAR Parts
fill rates
for B items

European 0.866 0.866 0.851 0.859 0.859 0.844 0.853 0.853 0.840

Eindhoven 0.829 0.896 0.813 0.823 0.890 0.802 0.816 0.887 0.797
Madrid 0.783 0.843 0.747 0.776 0.840 0.746 0.770 0.833 0.744
Leyland 0.785 0.830 0.777 0.778 0.826 0.774 0.772 0.817 0.772
Budapest 0.850 0.910 0.821 0.844 0.906 0.820 0.837 0.900 0.817

Total costs
per year
for part B items
(×1000e)

2576 2947 2514 2827 2472 2754

Table G.1: Validation of IP model for data of 2020

Scenario
1 2 3
Target IP Sim Target IP Sim Target IP Sim

PACCAR Parts
fill rates
for B items

European 0.820 0.820 0.811 0.813 0.813 0.807 0.807 0.807 0.801

Eindhoven 0.823 0.897 0.764 0.816 0.834 0.758 0.810 0.823 0.753
Madrid 0.730 0.845 0.721 0.723 0.822 0.720 0.717 0.815 0.712
Leyland 0.771 0.859 0.757 0.765 0.778 0.755 0.758 0.767 0.751
Budapest 0.763 0.891 0.744 0.757 0.824 0.742 0.750 0.813 0.725

Total costs
per year
for part B items
(×1000e)

2710 3038 2645 2869 2606 2785

Table G.2: Validation of IP model for data of 2021
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Analysis of IP model
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APPENDIX H. ANALYSIS OF IP MODEL

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure H.1: Frequency of stocking options for different scenarios of the PACCAR Parts fill rate of
items in group A for 2020
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(a) Scenario 1

(b) Scenario 2

(c) Scenario 35

Figure H.2: Frequency of stocking options for different scenarios of the PACCAR Parts fill rate of
items in group A for 2021
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Appendix I

Results of IP model

Current IP scenario Heuristic
1 2 3

PACCAR Parts
fill rates

European 0.870 0.878 0.873 0.868 0.870

Eindhoven 0.832 0.839 0.831 0.828 0.826
Madrid 0.781 0.790 0.784 0.779 0.781
Leyland 0.793 0.795 0.793 0.788 0.790
Budapest 0.844 0.856 0.853 0.850 0.840

Average
inventory values
(×1000e)

European 17001 16506 16011 15756 17015

Eindhoven 12136 11852 11396 11209 12139
Madrid 335 384 364 366 344
Leyland 2700 2177 2118 2124 2550
Budapest 1831 2092 2133 2058 1982

Costs per year
(×1000e)

Rush
transshipments

694 629 630 637 670

Regular
transshipments

175 119 115 114 150

Total
transshipments

869 748 745 751 819

Inventory 2040 1981 1921 1891 2042
Total 2909 2729 2667 2642 2861

Table I.1: Performances of items in group B in 2019

Current IP scenario Heuristic
1 2 3

PACCAR Parts
fill rates

European 0.847 0.851 0.844 0.840 0.846

Eindhoven 0.815 0.813 0.802 0.797 0.808
Madrid 0.729 0.747 0.746 0.744 0.730
Leyland 0.771 0.777 0.774 0.772 0.764
Budapest 0.831 0.821 0.820 0.817 0.829

Average
inventory values
(×1000e)

European 17241 17163 16634 16279 17355

Eindhoven 12390 12351 11871 11529 12264
Madrid 333 390 379 374 344
Leyland 2690 2252 2191 2204 2653
Budapest 1828 2171 2193 2172 2094

Costs per year
(×1000e)

Rush
transshipments

702 643 643 659 664

Regular
transshipments

177 124 114 114 142

Total
transshipments

878 767 758 774 805

Inventory 2069 2060 1996 1953 2083
Total 2947 2827 2754 2727 2888

Table I.2: Performances of items in group B in 2020
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Current IP scenario Heuristic
1 2 3

PACCAR Parts
fill rates

European 0.807 0.811 0.807 0.801 0.808

Eindhoven 0.764 0.764 0.758 0.753 0.758
Madrid 0.709 0.721 0.720 0.712 0.707
Leyland 0.752 0.757 0.755 0.751 0.787
Budapest 0.745 0.744 0.742 0.725 0.743

Average
inventory values
(×1000e)

European 18939 18446 17600 17665 18876

Eindhoven 14152 13875 13113 13164 14027
Madrid 327 380 361 355 331
Leyland 2666 2143 2046 2056 2688
Budapest 1795 2049 2081 2089 1830

Costs per year
(×1000e)

Rush
transshipments

611 550 573 547 586

Regular
transshipments

154 106 100 95 127

Total
transshipments

765 656 673 641 712

Inventory 2273 2214 2112 2120 2265
Total 3038 2869 2785 2761 2977

Table I.3: Performances of items in group B in 2021
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Pseudo code of SnoS heuristic

Algorithm 1 Stocking/non-stocking (SnoS) heuristic

1: for Every stocking location (small, medium, and large) do
2: Free up space in warehouse LEY and EHV ▷ Step 1
3: Set number of items to stock (I) ▷ Step 2
4: Set number of free locations in BUD, LEY and EHV (xBUD, xLEY , xEHV ) ▷ Step 2
5: Set stocking options (S) to BUD, LEY, EHV, LEY+EHV ▷ Step 3
6: while I ̸= 0 do
7: for Every item i ∈ I do
8: Calculate ETransshipmentCosts

i,s for s ∈ S ▷ Step 4

9: Calculate Bi,s = ETransshipmentCosts
i,s − ETransshipmentCosts

i,BUD for s ∈ S ▷ Step 5
10: end for
11: Set Bi,s with the highest value for i ∈ I, s ∈ S ▷ Step 6
12: Consider p as corresponding i and q as corresponding s
13: if q = LEY+EHV & I+1 < xBUD + xLEY + xEHV then ▷ Step 7
14: Allocate item p to LEY+EHV ▷ Step 6
15: Update xLEY , xEHV and remove i from I ▷ Step 6
16: else
17: Remove Bp,q and start in line 11 ▷ Step 7
18: end if
19: end while
20: end for
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Performances of items in group A

2019 2020 2021
PACCAR Parts fill rates European 0.981 0.979 0.970

Eindhoven 0.958 0.956 0.934
Madrid 0.926 0.920 0.910
Leyland 0.956 0.952 0.936
Budapest 0.954 0.946 0.936

Average inventory values
(×1000e)

European 30116 28298 38460

Eindhoven 16763 17197 25626
Madrid 1054 924 1278
Leyland 5764 5305 5614
Budapest 6535 4872 5942

Costs per year
(×1000e)

Rush
transshipments

1149 899 1946

Regular
transshipments

481 483 711

Total
transshipments

1630 1383 2657

Inventory 3614 3396 4615
Total 5244 4778 7272

Table K.1: Performances of items in group A
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Appendix L

Results of safety stock heuristic

Target PACCAR Parts European fill rate Current
0.965 0.970 0.975 0.980 0.985

PACCAR Parts
fill rates

European 0.958 0.962 0.966 0.971 0.975 0.965

Eindhoven 0.940 0.949 0.952 0.957 0.961 0.941
Madrid 0.880 0.886 0.892 0.899 0.901 0.906
Leyland 0.930 0.937 0.941 0.946 0.950 0.933
Budapest 0.929 0.936 0.941 0.944 0.951 0.94

Average inventory
values (×1000e)

European 35440 39757 43277 50296 54794 44892

Eindhoven 23995 26029 27649 30741 32464 28642
Madrid 826 1070 1166 1340 1444 1351
Leyland 5790 6652 7690 9064 9513 7978
Budapest 4829 6005 6773 9151 11373 6922

Costs per year
(×1000e)

Rush
transshipments

2437 2166 1933 1611 1388 1854

Regular
transshipments

878 776 689 567 482 662

Total
transshipments

3315 2942 2622 2178 1870 2582

Inventory 4253 4771 5193 6036 6575 5387
Total 7568 7713 7815 8214 8445 7969

Table L.1: Results safety stock heuristic for 2019
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APPENDIX L. RESULTS OF SAFETY STOCK HEURISTIC

Target PACCAR Parts European fill rate Current
0.965 0.970 0.975 0.980 0.985

PACCAR Parts
fill rates

European 0.953 0.957 0.961 0.967 0.970 0.962

Eindhoven 0.926 0.934 0.937 0.943 0.949 0.937
Madrid 0.857 0.864 0.869 0.873 0.880 0.899
Leyland 0.917 0.923 0.927 0.932 0.936 0.927
Budapest 0.913 0.916 0.922 0.925 0.934 0.931

Average inventory
values (×1000e)

European 36246 39567 42379 46626 50803 45177

Eindhoven 25341 26577 27816 30274 31311 29312
Madrid 869 925 946 1010 1056 1258
Leyland 4560 6114 7317 8497 10124 7840
Budapest 5476 5950 6299 6846 8312 6767

Costs per year
(×1000e)

Rush
transshipments

1984 1862 1736 1571 1485 1651

Regular
transshipments

788 736 683 616 578 670

Total
transshipments

2771 2597 2418 2187 2063 2321

Inventory 4350 4748 5085 5595 6096 5421
Total 7568 7713 7815 8214 8445 7742

Table L.2: Results safety stock heuristic for 2020

Target PACCAR Parts European fill rate Current
0.945 0.950 0.955 0.960 0.965

PACCAR Parts
fill rates

European 0.937 0.941 0.946 0.952 0.955 0.948

Eindhoven 0.910 0.916 0.919 0.923 0.925 0.917
Madrid 0.808 0.812 0.817 0.823 0.826 0.884
Leyland 0.905 0.909 0.913 0.915 0.922 0.912
Budapest 0.895 0.899 0.904 0.907 0.912 0.911

Average inventory
values (×1000e)

European 45905 48552 51409 55880 58454 55696

Eindhoven 30035 32154 34270 37578 39292 37737
Madrid 1159 1258 1327 1436 1491 1624
Leyland 6910 7309 7916 8744 9155 8267
Budapest 7801 7830 7897 8122 8516 8069

Costs per year
(×1000e)

Rush
transshipments

3233 3004 2790 2530 2380 2548

Regular
transshipments

1114 984 887 762 740 873

Total
transshipments

4346 3988 3676 3291 3121 3443

Inventory 5509 5826 6169 6706 7015 6684
Total 7568 7713 7815 8214 8445 10126

Table L.3: Results safety stock heuristic for 2021
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Appendix M

Results of Real-Coded Genetic
Algorithm

Class 2019 2020 2021
1 20.23 20.37 18.90
2 15.45 15.35 16.57
3 1.89 2.19 2.48
4 11.75 11.78 11.17
5 12.28 12.38 12.56
6 1.20 1.19 1.50
7 6.64 6.58 6.25
8 8.72 8.46 8.55
9 0.86 0.77 0.98
10 3.52 3.57 3.36
11 5.83 5.76 5.88
12 0.66 0.69 0.76
13 2.30 2.20 2.10
14 4.12 4.13 4.24
15 0.57 0.60 0.69
16 0.95 0.98 0.84
17 2.53 2.48 2.57
18 0.50 0.51 0.63

Table M.1: Percentage of SKUs per class

Target PACCAR Parts European fill rates as
percentage of current PACCAR Parts fill rates

Current

99.50 99.75 100.00 100.25 100.50 100.75 101.00 101.25
PACCAR Parts
fill rates

European 0.964 0.965 0.965 0.966 0.968 0.969 0.970 0.972 0.965

Eindhoven 0.940 0.941 0.942 0.944 0.946 0.947 0.949 0.952 0.941
Madrid 0.909 0.910 0.911 0.914 0.915 0.913 0.913 0.915 0.906
Leyland 0.933 0.935 0.936 0.939 0.942 0.944 0.947 0.950 0.933
Budapest 0.942 0.943 0.944 0.946 0.950 0.951 0.954 0.957 0.940

Average inventory
values (×1000e)

European 41250 41589 42415 43793 45103 46045 47859 49940 44892

Eindhoven 25657 25757 26242 26952 27539 27997 28847 29928 28642
Madrid 1195 1292 1288 1350 1412 1450 1538 1614 1351
Leyland 7466 7553 7756 8080 8471 8693 9100 9601 7978
Budapest 6931 6987 7130 7412 7681 7905 8374 8798 6922

Costs per year
(×1000e)

Rush
transshipments

1938 1933 1832 1779 1779 1706 1610 1570 1854

Regular
transshipments

651 634 614 584 550 538 517 483 662

Total
transshipments

2589 2567 2446 2364 2329 2244 2127 2053 2582

Inventory 4950 4991 5090 5255 5412 5525 5743 5993 5387
Total 7539 7557 7535 7619 7741 7769 7870 8046 7969

Table M.2: Results RCGA for 2019
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APPENDIX M. RESULTS OF REAL-CODED GENETIC ALGORITHM

Target PACCAR Parts European fill rates as
percentage of current PACCAR Parts fill rates

Current

99.50 99.75 100.00 100.25 100.50 100.75 101.00 101.25
PACCAR Parts
fill rates

European 0.960 0.962 0.961 0.963 0.965 0.965 0.967 0.970 0.962

Eindhoven 0.934 0.938 0.937 0.939 0.942 0.943 0.945 0.949 0.937
Madrid 0.899 0.904 0.903 0.906 0.909 0.903 0.907 0.909 0.899
Leyland 0.926 0.929 0.930 0.932 0.937 0.937 0.940 0.947 0.927
Budapest 0.932 0.934 0.935 0.936 0.941 0.937 0.944 0.954 0.931

Average inventory
values (×1000e)

European 42171 43292 43321 44185 46517 46932 48835 50516 45177

Eindhoven 27207 27829 27767 28336 29619 29958 30834 30448 29312
Madrid 1269 1306 1309 1330 1427 1430 1507 1624 1258
Leyland 7460 7717 7760 7972 8464 8480 8985 9606 7840
Budapest 6235 6440 6485 6547 7006 7064 7509 8839 6767

Costs per year
(×1000e)

Rush
transshipments

1572 1572 1572 1558 1449 1383 1320 1267 1651

Regular
transshipments

672 635 589 552 555 550 502 478 670

Total
transshipments

2244 2207 2160 2110 2004 1933 1822 1745 2321

Inventory 5060 5195 5199 5302 5582 5632 5860 6062 5421
Total 7305 7402 7359 7412 7586 7565 7683 7807 7742

Table M.3: Results RCGA for 2020

Target PACCAR Parts European fill rates as
percentage of current PACCAR Parts fill rates

Current

99.50 99.75 100.00 100.25 100.50 100.75 101.00 101.25
PACCAR Parts
fill rates

European 0.947 0.948 0.949 0.950 0.951 0.953 0.955 0.955 0.948

Eindhoven 0.917 0.918 0.919 0.921 0.922 0.925 0.927 0.928 0.917
Madrid 0.887 0.886 0.888 0.891 0.890 0.891 0.892 0.889 0.884
Leyland 0.912 0.912 0.914 0.918 0.920 0.923 0.926 0.927 0.912
Budapest 0.913 0.914 0.916 0.919 0.920 0.923 0.927 0.927 0.911

Average inventory
values (×1000e)

European 52148 52818 53743 54448 55900 57184 58475 58905 55696

Eindhoven 35132 35557 36059 36328 37327 37996 38623 38876 37737
Madrid 1580 1589 1635 1657 1708 1754 1838 1864 1624
Leyland 8044 8165 8319 8600 8835 9108 9489 9543 8267
Budapest 7391 7507 7730 7863 8030 8327 8524 8623 8069

Costs per year
(×1000e)

Rush
transshipments

2492 2483 2507 2426 2482 2365 2326 2318 2548

Regular
transshipments

846 852 817 798 758 739 725 707 873

Total
transshipments

3338 3335 3324 3224 3240 3104 3051 3025 3443

Inventory 6258 6338 6449 6534 6708 6862 7017 7069 6684
Total 9595 9673 9773 9758 9948 9966 10068 10093 10126

Table M.4: Results RCGA for 2021

Figure M.1: PACCAR Parts European fill rate versus total costs for current situation, safety stock
heuristic, and RCGA
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APPENDIX M. RESULTS OF REAL-CODED GENETIC ALGORITHM

SnoS heuristic
and RCGA

IP
and RCGA

Current situation

PACCAR Parts
fill rates

European 0.965 0.965 0.965

Eindhoven 0.942 0.941 0.941
Madrid 0.911 0.913 0.906
Leyland 0.936 0.936 0.933
Budapest 0.944 0.943 0.940

Average inventory
values (×1000e)

European 42415 42451 44892

Eindhoven 26242 26358 28642
Madrid 1288 1324 1351
Leyland 7756 7626 7978
Budapest 7130 7144 6922

Costs per year
(×1000e)

Rush
transshipments

1832 1793 1854

Regular
transshipments

614 576 662

Total
transshipments

2446 2370 2582

Inventory 5090 5094 5387
Total 7535 7464 7969

Table M.5: Sensitivity analysis stocking/non-decision for 2019
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Appendix N

Safety stock coverage levels per
class

Class
Target PACCAR Parts fill rates as percentage
of current PACCAR Parts fill rates
99.50 99.75 100.00 100.25 100.50 100.75 101.00 101.25

1 11.45 12.16 12.37 12.18 14.83 17.62 19.95 23.14
2 17.17 16.62 18.49 19.03 22.17 23.19 26.13 29.67
3 20.38 20.63 21.18 22.02 24.83 27.70 29.31 32.80
4 17.17 19.45 22.04 22.50 22.45 25.14 26.64 27.63
5 22.84 25.10 28.18 28.68 29.17 30.03 31.82 33.25
6 27.13 29.04 33.97 33.64 32.72 35.80 38.02 37.49
7 24.22 24.47 25.74 26.85 27.86 30.64 30.30 33.35
8 29.78 31.15 30.96 33.24 35.27 37.38 36.83 38.50
9 34.62 36.28 36.52 39.34 40.64 41.31 41.48 45.45
10 27.34 28.50 30.94 31.64 32.16 35.98 35.87 39.12
11 33.05 34.00 36.48 37.20 36.70 41.13 40.59 45.86
12 38.70 39.38 41.99 44.20 45.64 46.65 46.98 50.41
13 32.81 33.46 35.34 36.16 37.88 40.41 42.04 43.17
14 39.04 39.22 40.61 40.88 43.68 45.67 47.84 48.66
15 43.61 43.81 47.17 48.35 47.66 51.32 53.48 53.76
16 38.05 40.01 40.34 40.46 42.04 43.64 45.16 47.00
17 43.93 44.85 45.84 46.53 46.02 49.82 50.83 53.88
18 47.69 51.79 51.04 51.69 54.00 55.86 55.81 57.92

Table N.1: Safety stock coverage levels per class proposed by the RCGA for 2019
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APPENDIX N. SAFETY STOCK COVERAGE LEVELS PER CLASS

Class
Target PACCAR Parts fill rates as percentage
of current PACCAR Parts fill rates
99.50 99.75 100.00 100.25 100.50 100.75 101.00 101.25

1 14.09 14.93 14.32 17.14 20.74 21.01 23.42 25.63
2 17.10 18.18 18.49 18.41 22.77 22.76 25.28 26.74
3 18.73 19.48 19.85 20.24 23.45 23.17 27.45 28.04
4 20.63 22.80 22.80 24.30 25.50 25.87 28.24 30.51
5 22.51 24.12 24.40 26.38 27.08 27.47 29.36 31.99
6 23.37 25.20 25.98 27.49 28.44 29.05 31.11 32.87
7 24.98 27.87 27.45 29.01 31.31 31.80 32.24 34.84
8 28.15 29.69 30.12 30.09 33.00 33.21 32.82 36.30
9 29.30 30.89 31.36 32.20 33.48 33.61 34.34 37.25
10 31.30 32.21 32.21 33.67 35.96 37.12 36.46 39.65
11 33.35 34.32 34.04 34.67 37.07 38.31 38.12 42.27
12 34.95 35.67 35.36 35.84 38.48 39.36 39.79 43.77
13 37.07 37.65 37.53 37.19 39.72 40.12 40.64 44.88
14 38.35 40.33 40.38 39.79 40.54 41.69 41.42 45.84
15 39.61 42.68 42.63 41.96 41.46 42.82 42.58 48.14
16 41.44 44.01 43.96 43.51 42.71 44.30 44.30 49.68
17 43.99 45.11 45.37 44.37 44.18 46.02 45.65 52.61
18 44.85 47.15 47.32 45.17 46.33 47.26 47.50 55.62

Table N.2: Safety stock coverage levels per class proposed by the RCGA for 2020

Class
Target PACCAR Parts fill rates as percentage
of current PACCAR Parts fill rates
99.50 99.75 100.00 100.25 100.50 100.75 101.00 101.25

1 12.89 14.21 15.17 14.75 16.68 18.41 18.53 18.45
2 16.20 16.59 18.02 17.94 18.84 19.89 21.55 21.65
3 17.83 17.78 18.86 19.50 20.47 21.50 23.57 23.84
4 20.85 19.29 20.50 20.66 23.28 24.51 25.97 26.25
5 23.48 24.00 23.13 25.06 25.79 25.99 27.43 28.34
6 24.03 24.67 24.72 27.51 28.54 29.03 30.17 30.72
7 25.03 25.77 26.05 28.77 30.63 31.27 32.14 32.33
8 26.28 26.77 27.18 29.70 31.87 33.13 33.33 33.31
9 28.36 28.45 29.10 31.98 33.30 34.50 35.24 35.49
10 30.31 30.95 32.29 33.17 34.02 35.63 36.65 37.15
11 31.42 32.52 34.15 34.52 36.31 37.68 38.28 38.69
12 33.15 34.44 35.05 35.82 38.15 39.18 40.67 41.35
13 35.15 35.80 35.98 37.30 38.64 40.34 41.75 42.50
14 36.83 37.80 37.51 38.07 39.96 41.51 43.69 44.77
15 38.49 38.81 38.86 40.11 41.06 41.99 44.47 45.84
16 39.98 40.34 41.23 42.66 43.13 44.26 45.85 47.28
17 41.79 41.95 42.19 43.99 44.69 46.64 47.66 48.99
18 42.82 42.84 43.84 45.32 45.80 47.89 49.80 51.49

Table N.3: Safety stock coverage levels per class proposed by the RCGA for 2021

86


	Contents
	List of Figures
	List of Tables
	Introduction
	Report structure
	Company context
	Transportation network
	From supplier to warehouse
	From warehouse to dealer

	Current replenishment policy
	Current stocking policy
	Key Performance Indicators
	Fill rate
	Total costs


	Problem definition
	Problem setting
	Problem context

	Problem statement
	Problem validation
	Research design
	Scope
	Research questions

	Research methods
	Theoretical contribution

	Simulation model
	Input data
	Product data
	Forecast data
	Demand data
	Supplier reliability

	Simulation
	Generic process
	Starting values
	Simulation versus reality

	Current performance

	Stocking/non-stocking IP model
	ABC classification
	IP model
	Sets
	Parameters

	Cost approximations
	Transshipment costs
	Inventory costs
	Total costs calculation
	Stochastic lead times
	Lead time selection

	Mathematical formulation

	Stocking/non-stocking heuristic
	Safety stock heuristic
	Optimization problem
	Assumptions
	Multi-location problem
	Seasonality
	Deterministic lead times

	Greedy approach

	Genetic algorithm
	Classification
	PACCAR Parts fill rate and inventory costs trade-off
	Variability

	Real-Coded Genetic Algorithm
	Initialize population
	Calculate fitness value
	Selection
	Crossover
	Mutation
	Termination criteria


	Results
	Stocking/non-stocking decision
	Group A and B items
	PACCAR Parts fill rates
	IP validation
	Analysis
	Performances

	Safety stock heuristic
	Real-coded genetic algorithm
	Analysis of generations
	Performances
	Sensitivity analysis stocking/non-decision


	Conclusion
	Conclusion
	Recommendation
	Contribution to Scientific Literature
	Limitations & Future Research

	References
	Appendix
	Flowchart simulation model
	Simulation model validation
	Sensitivity analysis lead times
	Stocking opportunities
	Recursive equations
	Parameter settings
	Validation IP model for 2020 and 2021
	Analysis of IP model
	Results of IP model
	Pseudo code of SnoS heuristic
	Performances of items in group A
	Results of safety stock heuristic
	Results of Real-Coded Genetic Algorithm
	Safety stock coverage levels per class



