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Abstract—This paper introduces a formal modeling approach
for compositional specification of both functionality and timing
of manufacturing systems. Functionality aspects can be consid-
ered orthogonally to timing aspects. The functional aspects are
specified using two abstraction levels; high-level activities and
lower level actions. Design of a functionally correct controller is
possible by looking only at the activity level, abstracting from the
different execution orders of actions and their timing. As a result,
controller design can be performed on a much smaller state space
compared to an explicit model where timing and actions are
present. The performance of the controller can be analyzed and
optimized by taking into account the timing characteristics. Since
formal semantics are given in terms of a (max,+) state space,
various existing performance analysis techniques can be used.
We illustrate the approach, including performance analysis, on
an example manufacturing system.

I. INTRODUCTION

One of the challenges in the design of manufacturing sys-
tems is the development of supervisory control components.
Due to increasing complexity of these systems, design of
these components is becoming more difficult. In such systems,
supervisory controllers play a role to guarantee functional
correctness, for instance, to prevent unsafe behavior of the
system such as product or robot collisions in a shared physical
area. Besides functional correctness, the controller must also
optimize performance criteria such as maximizing throughput
or minimizing makespan. In order to perform this optimiza-
tion, the timing characteristics of the system are necessary.

In this paper, we introduce a formal modeling approach,
shown in Fig. 1, to address both functionality and timing
aspects of manufacturing systems in a compositional way. Sys-
tem operations are modeled as so called activities. Activities
are specified as directed acyclic graphs, which consist of (1) a
set of actions executed on resources, and (2) a set of depen-
dencies among the actions. Functional requirements related to
activity sequences are modularly and concisely specified using
automata. These requirements can for instance enforce product
life cycles and ensure safety [1]. The composition of these
automata is characterized using multiparty synchronization,
where execution of shared events among different automata
is synchronous. The advantage of multiparty synchronization
is that requirements can be added in a modular way, and are
respected after composition.

Fig. 1. Overview of the modeling approach.

Controller design is performed on the activity level, abstract-
ing from the internals (actions) of activities. This means that
at the controller level, there is no redundant interleaving from
different execution orders of fine-grained actions. Furthermore,
we abstract from the specific timing of actions. As a result,
the state space of the controller is much smaller compared to
an explicit model where timing and actions are present.

Performance analysis and optimization of the supervisory
controller requires the dynamic semantics (the timing be-
havior) of our modeling approach. The dynamic semantics
of activities is expressed using matrices in (max,+) linear
algebra (see for instance [2]). These matrices abstract from
the internal graph structure, which has again an advantage
in terms of scalability. Activity sequences are captured by
(max,+) automata [3], which can also be represented by
a (max,+) state space. These automata combine matrices
with nondeterministic choices, corresponding to choices in the
ordering of activities. Finding a throughput-optimal controller
corresponds to finding an optimal repeatable activity sequence
in the state space, which can be found using existing optimal
cycle ratio algorithms [4].

The modeling approach presented in this paper can be
taken as a semantic underpinning, on top of which a domain
specific language (DSL) is put, allowing system engineers to
model a complete system. Our approach is already in use
within ASML1, the world-leading manufacturer of lithography

1www.asml.com



systems, to formalize the specification of the product handling
part of their machines. The DSL that is put on top describes
the system in terms of resources, actions, symbolic positions
of motors, and activities that can be performed.

The remainder of the paper is structured as follows. Sec-
tion II describes the modeling concepts, and the static and
dynamic semantics of both activities and activity sequences.
Section III illustrates the use of the modeling approach by
an example manufacturing system. Both the activities and the
allowed activity sequences are modeled concisely. The model
is used to find a throughput-optimal controller for the system.
Section IV describes how the modeling formalism is being
used in industry. Related work is given in Section V, and
Section VI concludes the paper and describes future extensions
that are currently being investigated.

II. MODELING CONCEPTS

In this section, we introduce the formal semantics of our
modeling approach. First we focus on describing all possible
machine behaviors. Then, we describe activities and activity
sequences that allows to decribe useful behavior.

We view the system as consisting of a set of peripherals.
Each of these peripherals can execute actions. The complete
set of actions describes all behavior that the machine can
exhibit. Peripherals are aggregated into resources, which can
be claimed and released. As an example, consider a robot
resource that can move products. This robot has a number of
peripherals that can perform actions, such as a clamp that can
hold or release a product, or a robot motor to move the robot.

In manufacturing systems there are often operations of
coordinated actions, that describe a scenario of deterministic
behavior. For instance, picking up a product and placing it
on another processing station, or performing a fixed operation
on the product. These entire operations are modeled as single
activities, consisting of a fixed set of actions and dependencies
among them. A supervisory controller influences the order in
which activities can be executed, but not the order of actions in
an activity. Fig. 2 gives a schematic overview of the modeling
concepts and the different layers.

In the remainder of this section, we describe the static and
dynamic semantics of both activities and activity sequences.

A. Static Semantics

The following sets define the basic elements of our model:
• set A of actions, with typical elements a ∈ A;
• set P of peripherals, with typical elements p ∈ P;
• set R of resources, with typical elements r ∈ R.
We assume a function R : P → R, such that R(p) is the

resource that contains p.
Given the basic elements of the language, we now introduce

the notion of an activity, and define its structure. As a
running example, we have the three activities shown in Fig. 3.
Activities are directed acyclic graphs (DAGs), consisting of a
set of actions executed on resources, and dependencies among
those actions. Nodes refer to either an action executed by a
peripheral, or a claim or release of a resource. In Fig. 3, nodes
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Fig. 2. Schematic overview of the concepts in our formal modeling approach.
The system is modeled using resources consisting of a number of peripherals,
which can execute actions. Activities describe deterministic operations in the
system. A supervisory controller controls the system by influencing the order
of activity execution.

are annotated with their mapping, and the value in the node
is the execution time. The colors indicate peripheral actions
included in a certain activity.

Definition 1. An activity is a DAG (N,→), consisting of a set
N of nodes and a set → ⊆ N ×N of dependencies. We write
a dependency (a, b) ∈ → as a → b, We assume a mapping
function M : N → A×P ∪R× {rl, cl}, which associates a
node to either a pair (a, p) referring to an action executed on
a peripheral; or to a pair (r, v) with v ∈ {rl, cl}, referring
to a claim (cl) or release (rl) of resource r. Nodes mapped to
a pair (a, p) are called action nodes, and nodes mapped to
a claim or release of a resource are called claim and release
nodes respectively.

We assume a number of constraints that ensure that ac-
tivities can be statically checked for proper resource claiming.
These constraints are however not strictly necessary for timing
analysis.
• All nodes mapped to the same peripheral are sequentially

ordered to avoid self-concurrency;
• Each resource is claimed no more than once;
• Each resource is released no more than once;
• Every action node is preceded by a claim node on the

corresponding resource;
• Every action node is succeeded by a release node on the

corresponding resource;
• Every release node is preceded by a claim node on the

corresponding resource;
• Every claim node is succeeded by a release node on the

corresponding resource.
For each activity, we define the set of resources it uses,

which is needed in the later definition of sequencing activities.

Definition 2 (Resources of Activity). Given activity Act =
(N,→), we define set
R(Act) = {r ∈ R | (∃n ∈ N |M(n) = (r, cl))}.

Multiple activities can be composed into a combined ac-



Fig. 3. Activities Act1, Act2, and Act3.

Fig. 4. Activity Act1 ·Act2 ·Act3.

tivity using the sequencing operator. Given the set of shared
resources, it removes intermediate release and claim nodes
on these resources, and properly links the dependencies. This
form of sequencing is similar to the notion of weak sequential
composition [5], which is also defined relative to a dependency
relation over a set of actions.

Definition 3 (Sequencing Operator). Given two activities
Act1 = (N1,→1) and Act2 = (N2,→2) with N1 ∩N2 = ∅,
we define Act1 ·Act2 as activity Act1·2 = (N1·2,→1·2).

Let R1∩2 = R(Act1)∩R(Act2) denote the set of resources
used in both activities. Define the set of corresponding release
nodes in N1, and claim nodes in N2 as
rl1∩2 = {n1 | n1 ∈ N1 ∧ (∃r ∈ R1∩2 | M(n1) = (r, rl))},
and cl1∩2 = {n2 | n2 ∈ N2∧ (∃r ∈ R1∩2 |M(n2) = (r, cl))}
respectively.

Activity Act1·2 = (N1·2,→1·2) is now defined as follows:

N1·2 = (N1 ∪N2)\(cl1∩2 ∪ rl1∩2)

→1·2 = {(ni, nj) | ni →1 nj ∧ nj 6∈ rl1∩2} ∪
{(ni, nj) | ni →2 nj ∧ ni 6∈ cl1∩2} ∪
{(n1, n2) | (∃nrl ∈ rl1∩2 | n1 →1 nrl) ∧

(∃ncl ∈ cl1∩2 | ncl →2 n2)}.

Fig. 4 shows how activities Act1, Act2, and Act3, shown
in Fig. 3, are composed to activity Act1 · Act2 · Act3 using
the sequencing operator. Note that the sequencing operator is
associative.

B. Dynamic Semantics

So far, we have described the structure of activities and
the way they can be composed. In order to do performance

analysis, we need to introduce timing information. We do so
on action level, activity level, and activity sequence level.

Definition 4 (Execution time of an action). We assume a
function T : A → R≥0 that maps each action to its fixed
execution time.

Definition 5 (Execution time of a node). We define a function
T : N → R≥0 that maps each node to a fixed execution time,
given a node n ∈ N in activity (N,→):

T (n) =


T (a) if M(n) = (a, p)

for some a ∈ A, p ∈ P
0 otherwise.

We use (max,+) algebra to capture the dynamic semantics
of activities in a concise way. Two essential characteristics of
the execution of an activity are synchronization; when a node
waits for all its incoming dependencies to finish, and delay;
when an action execution starts, it takes a fixed amount of time
before it completes. These characteristics correspond well to
the (max,+) operators max and addition, defined over the set
R−∞ = R∪{−∞}. The max and + operators are defined as
in usual algebra, with the additional convention that −∞ is
the unit element of max: max(−∞, x) = max(x,−∞) = x,
and the zero-element of addition: −∞ + x = x + −∞ =
−∞. Addition distributes over the maximum operator: x +
max(y, z) = max(x+ y, x+ z).

To formalize synchronization we need a notion of predeces-
sor nodes.

Definition 6 (Predecessor nodes). Given activity (N,→) and
node n ∈ N , we define the set of predecessor nodes:

Pred(n) = {nin ∈ N | nin → n}.

Since actions are executed on resources, we assume a
resource time stamp vector γR : R → R−∞. The vector
represents the system state in terms of resource availability.
Each entry γR(r) corresponds to the availability time of the
resource r in the system. These entries are used to determine
when resources are available, and hence can be claimed. All
entries in the initial vector are assumed to be zero, to indicate
that all resources are available upon start of the system.

Definition 7 (Start and completion time of a node). Given
activity Act = (N,→) and resource time stamp vector γR,
we can define the start time start(n) and completion time
end(n) for each node n ∈ N :

start(n) =

γR(r) if M(n) = (r, cl)

max
nin∈Pred(n)

end(nin) otherwise

end(n) = start(n) + T (n).

Action a can start as soon as all predecessor actions
completed execution. Note that the start and end times for each
node are uniquely defined, due to the structural properties of
activities. This also means that the dynamic semantics of an



activity Act = (N,→) is uniquely defined by N , →, and a
timing function T ,

Now, consider a resource time stamp vector γR as starting
configuration of the system. After execution of activity Act =
(N,→), we get a new resource time stamp vector γ′R, where
each entry is defined as follows:

γ′R(r) =


γR(r) if r 6∈ R(Act)

end(n) if r ∈ R(Act) ∧M(n) = (r, rl)

for some n ∈ N.

Since (max,+) algebra is a linear algebra, it can be
extended to matrices and vectors in the usual way. Given
matrix A and vector x, we use A⊗x to denote the (max,+)
matrix multiplication. Given m × p matrix A and p × n
matrix B, the elements of the resulting matrix A ⊗ B are
determined by: [A⊗B]ij =

p
max
k=1

([A]ik + [B]kj). For any
vector x, ‖x‖ = maxi xi denotes the vector norm of x. For
vector x, with ‖x‖ > −∞, we use xnorm to denote x−‖x‖,
the normalized vector, such that ‖xnorm‖ = 0. We use 0 to
denote a vector with all zero-valued entries.

Using this linear algebra, we can capture the behavior
of an activity in a (max,+) matrix. Consider activity Act,
characterized by a (max,+) matrix MAct. Then, given a
resource time stamp vector γR, the new vector γ′R is given
by γ′R = MAct⊗γR. An algorithm for computing the activity
matrices automatically can be found in [6, Algorithm 1].

Example 8 ((max,+) characterization). Consider activity
Act1, shown in Fig. 3, with T (a) = 1, T (b) = 2, T (c) = 3
and T (d) = 1. Where R = {r1, r2}, R(p1) = R(p3) = r1,
and R(p2) = r2. We start with a resource time stamp vector
γR = [r1, r2]ᵀ. Now, the (max,+) expressions related to the
ending time of the nodes are as follows:

end(cl(r1)) = γR(r1)

end(cl(r2)) = γR(r2)

end(a) = max(end(cl(r1))) + T (a) = γR(r1) + 1

end(b) = max(end(cl(r2))) + T (b) = γR(r2) + 2

end(c) = max(end(a), end(b)) + T (c)

= max(γR(r1) + 1, γR(r2) + 2) + 3

= max(γR(r1) + 4, γR(r2) + 5)

end(d) = max(end(b)) + T (d) = γR(r2) + 3

end(rl(r1)) = end(c) = max(γR(r1) + 4, γR(r2) + 5)

end(rl(r2)) = end(d) = γR(r2) + 3.

The (max,+) characterization of end(rl(rj)) for any rj
can be written in the normal form rj = maxri∈R(γR(ri)+ti)
for some ti ∈ R−∞. Note that ti = −∞ for any ri ∈ R \
R(Act1). Written in normal form, we get:

end(rl(r1)) = max(γR(r1) + 4, γR(r2) + 5)

end(rl(r2)) = max(γR(r1) +−∞, γR(r2) + 3).
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(a) Gantt chart of Act1 given
starting vector γR = [0, 0]ᵀ.
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(b) Gantt chart of Act1 given starting
vector γR = [0, 1]ᵀ.

Fig. 5. Gantt charts for Act1 given different starting resource availability
vectors.

The (max,+) characterization of the activity is

MAct1 =

[
4 5
−∞ 3

]
.

Given γR, the new vector γ′R is computed as follows:

MAct1 ⊗ γR =

[
4 5
−∞ 3

]
⊗
[
γR(r1)
γR(r2)

]
=

[
max(4 + γR(r1), 5 + γR(r2))

max(−∞+ γR(r1), 3 + γR(r2))

]
=

[
γ′R(r1)
γ′R(r2)

]
.

For example, given starting vector γR = [0 1]ᵀ, γ′R is
computed as:

MA1 ⊗ γR =

[
4 5
−∞ 3

]
⊗
[
0
1

]
=

[
max(4 + 0, 5 + 1)

max(−∞+ 0, 3 + 1)

]
=

[
6
4

]
.

Fig. 5 shows the Gantt charts for Act1, for two different
starting resource availability vectors. Thick edges are used to
indicate the time at which resources are claimed and released
by the activity. The light gray area denotes that we have to
wait until the resource becomes available, and the light yellow
areas indicate that the resource is claimed but no action is
being executed on it.

The timing semantics of an activity sequence is defined in
terms of repeated matrix multiplication. Note that alternatively,
the timing can also be computed by first composing all
activities using the sequencing operator (Def. 3). The matrix
multiplication is however more efficient, since each activity
matrix has to be computed only once.

Lemma 9 ((max,+) dynamics of an activity sequence).
Consider activities Act1 and Act2. Then MAct1·Act2 =
MAct2 ⊗MAct1 .

Fig. 6 shows the Gantt chart induced by activity sequence
Act1 · Act2 · Act3. Note that activities are pipelined on
the resources. For instance, Act2 starts before Act1 is fully
completed.

C. Dispatching Activities

We use a non-deterministic finite state machine (FSM) to
model all allowed (possibly infinite) activity sequences. These
activity sequences ensure that functional requirements are
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Fig. 6. Gantt chart of Act1 ·Act2 ·Act3 given starting vector γR = [0, 0, 0]ᵀ.

met, for instance related to enforcing product life cycles and
ensuring safety aspects.

Definition 10 (Activity-FSM). An Activity-FSM F on Act is a
tuple 〈L,Act, δ, l0〉 where L is a finite set of locations, Act is
a nonempty set of activities, δ ⊆ L×Act×L is the transition
relation, and l0 ∈ L is the initial location. Let l Act→ l′ be a
shorthand for (l, Act, l′) ∈ δ.

The timing of activities can be added to the Activity-
FSM by adding the (max,+) matrix of each activity to
the corresponding edges. From this automaton a (max,+)
state space can be generated for performance analysis of the
controller.

Definition 11 (Normalized (max,+) state space (adapted
from [7])). Given Activity-FSM 〈L,Act, δ, l0〉, resource set R,
and (max,+) matrix set {MAct | Act ∈ Act}, we define the
normalized (max,+) state space 〈C, co,∆〉 as follows.

• Initial configuration c0 = 〈l0,0〉.
• Set C = L × R−∞|R|

of configurations consisting of a
location and a normalized resource availability vector.

• A labeled transition relation ∆ ⊆ C × R × Act × C
consisting of the transitions in the set
{〈〈l, γR〉,

∥∥γ′R∥∥ , Act, 〈l′, γ′normR 〉〉 |
(l, Act, l′) ∈ δ ∧ γ′R = MAct ⊗ γR}.

Each state 〈l, γR〉 refers to both an FSM location l,
and a resource availability vector γR. Consider an edge
〈〈l, γR〉,

∥∥γ′R∥∥ , Act, 〈l′, γ′normR 〉〉. We start from state 〈l, γR〉,
and execute the scenario on the edge 〈l, l′〉 in the FSM.∥∥γ′R∥∥ denotes the transit time. The new state is 〈l′, γ′normR 〉,
where the new resource time stamp vector is computed as
γ′R = MAct ⊗ γR, which is subsequently normalized. The
state space records only the normalized resource availability
vectors, since only the relative timing differences affect the
future behavior, not their absolute offset.

Each reachable cycle in this state space allows for a periodic
execution of the system. Each edge on this cycle is associated
with a transit time corresponding to the activity duration. Let
the transit time of a cycle be the sum of the transit time values
of its edges. Then the cycle mean is equal to its transit time
divided by the number of edges in the cycle. Both the best
and worst case performance of the system can be found by
looking at these cycles, using an maximum or minimum cycle
mean algorithm [4], [7].
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Fig. 7. Manufacturing system example (Twilight system) with two robots and
two production stages.

III. EXAMPLE: TWILIGHT SYSTEM

In this section we show how the modeling approach can
be used to model and analyze a manufacturing system. As
an example we take the Twilight system shown in Fig. 7,
where balls are processed each following a given recipe.
This manufacturing system is a simplification of the product
handling model that has been created at ASML, using similar
kinds of peripherals and resources.

A. Example Manufacturing System

Our example system contains four resources. First, there
are two robots to transport balls; the load robot (LR) and the
unload robot (UR). Each robot has a homing position; LR on
the left corner, and UR on the right corner. The other two
resources are processing stations, the conditioner (COND) to
ensure a right ball temperature, and the drill (DRILL) to drill
a hole in a ball. Both robots have three peripherals; a clamp
(CL) to pick up and hold a ball, an R-motor (R) to move along
the rail, and a Z-motor (Z) to move the clamp up and down.
Since each robot can reach both processing stations, there is
a collision area (CA). Both processing stations have a clamp
peripheral. The conditioner has a heater (H), to heat a ball. The
drill has an R-motor (R) to rotate the drill bit, and a Z-motor
(Z) to move the drill bit up and down.

Each ball processed by the system follows the same life
cycle. First, a ball is picked up at the input buffer by the load
robot. Then it is brought to the conditioner and processed.
Next, the item is transported by either one of the robots to the
drill, where it is drilled. Finally, the drilled ball is transported
to the output buffer.

B. Activities

In our system, there are two activities that process balls:
Condition and Drill. For transportation of the balls, there are
two types of activities: picking up a ball by a robot, and
releasing a ball by a robot on a product location. The complete
set of activities is shown in Table I.

Each activity is modeled formally by specifying the actions
involved and the dependencies between these actions. As an
example, consider activity LR PickFromCond shown in Fig. 8,
in which the load robot picks a ball from the conditioner.

In activity LR PickFromCond, we use the special resource
CA to model the physical collision area above COND and



TABLE I
SET OF ACTIVITIES FOR OUR EXAMPLE SYSTEM.

LR PickFromInput LR PutOnDrill UR PutOnCond
LR PutOnCond UR PickFromDrill UR PutOnOutput
LR PickFromCond UR PickFromCond Condition
LR PickFromDrill UR PutOnDrill Drill

Fig. 8. Activity LR PickFromCond.

DRILL. As long as one robot has claimed this resource, the
other robot cannot enter. Robots always return to their safe
home position before ending a robot activity. Using a homing
position guarantees safety, but might not result in a throughput-
optimal system. More refined activities allow more scheduling
freedom by the controller, which can be used to improve the
maximal achievable throughput. We will not consider such
refinements here.

C. Allowed Activity Sequences

Given the system activities, we model which activity se-
quences are allowed. This is done using a set of requirements,
modeled as automata, where the transitions are labeled with
activity names. Multiparty synchronization is used, where ex-
ecution of shared events is synchronous. This synchronization
mechanism ensures that after composition, each requirement
is still taken into account.

As mentioned before, each activity involves the transport
or processing of a ball. In the model, we explicitly model the
ball instances in the system by adding an identifier i in the the
activity name suffix. An infinite product stream is simulated by
using five ball instances (see Fig. 9), induced by the resource
capacity of the system (see also [1]). Products enter the system
in the order induced by their indices. Given an activity Act
involving a product and set I of product identifiers, we define
set Act ∗ = {Act i | i ∈ I}.

For each ball we model the location in the system and the
enabled activities, shown in Fig. 10. For instance, if a ball is
at the drill (atDrill), the system can perform the Drill activity
on this ball, or pick it up by one of the robots.

Each ball is required to follow the same life cycle. This
requirement is modeled using the automaton shown in Fig. 11.

Fig. 9. Product order automaton.

Fig. 10. Product location automaton.

Fig. 11. Life cycle automaton.

Moves are explicitly encoded to ensure that balls always
move forward in the system. In this way, we can find a
meaningful minimal throughput guarantee in the analysis step.
Note that there is still scheduling freedom which robot is used
to transport a ball from the conditioner to the drill. This choice
might have an impact on the overall system performance.

To avoid ball collisions, we add location state automata,
shown in Fig. 12. These automata ensure that after picking up
a ball by a robot, it must first be released before the next ball
can be picked. In the same way, we avoid putting two balls
on the conditioner or the drill.

Given the set of activities, and the requirements, we use
supervisory controller synthesis [8], [9] to obtain an Activity-
FSM of all allowed activity sequences. By using synthesis,
the Activity-FSM is guaranteed to be deadlock-free and func-
tionally correct with respect to the modeled requirements. The
resulting Activity-FSM after synthesis is shown in Fig. 13.

Since requirements are modeled in a compositional way, it

(a) Product location COND (b) Product location DRILL

(c) Product location LR (d) Product location UR

Fig. 12. Location state automata.
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Fig. 13. Synthesized Activity-FSM for our example (245 locations and 510
transitions). The green cycle is an optimal dispatch sequence, the red cycle
is a worst-case dispatch sequence.

is also possible to use modular synthesis techniques [10], [11]
for larger cases. The result is a set of supervisors that work
in conjunction to enforce the complete set of requirements.

D. Analysis

To do performance analysis, we compute the matrices of the
activities and then the normalized (max,+) state space. This
state space contains 1633 states and 2894 edges. To find the
best-case throughput of the system, we use the cycle analysis
algorithm as described in Section II-C. This algorithm yields
the optimal dispatch sequence for steady-state behavior, shown
in green in Fig. 13.

E. Explicit Modeling using Finite Automata

We have also modeled the example system explicitly using
finite state automata with timing, to verify the benefit of our
modeling approach with respect to scalability. This benefit
arises from the abstraction of the actions in activities. In
the full model, there is explicit interleaving of all actions
contained in activities. Note that the full model contains the
same schedules, since we only unfold the interleaving of low-
level actions.

Each activity is modeled as an automaton, and instantiated
for each occurrence in the Activity-FSM with a unique identi-
fier. Per resource we have an automaton to capture the prece-
dence constraints among activities. For each resource, there
is an automaton that ensures correct claiming and releasing.
In this model, also multi-party synchronization is used. As a
modeling tool we have used CIF3 [12].

Exploration of the full state space ran out of memory after
an hour on an Intel E5-2630 CPU and 100GB of available
virtual memory. We found out that the full state space contains
at least 5 million states. This shows the huge state space
reduction that can be achieved by the (max,+) state space,

compared to a state space with full interleaving of actions.
The experiment shows the benefit of our formal modeling
approach, where analysis can be done within a few seconds.

IV. INDUSTRIAL APPLICATION

At ASML, the modeling formalism is used as a semantic
underpinning of a DSL to express part of the system behavior.
The DSL allows domain engineers to describe the system
in terms of resources, peripherals, actions, and activities. An
important subset of the available actions are determined by
symbolic positions and motion paths of robot resources. For
example, two robot arms have been modeled that have 3 axes,
around 50 symbolic positions each, and around 300 motion
paths between symbolic positions resulting in a large set of
possible peripheral actions. Using this system model, various
activity sequences can be analyzed in terms of performance.
Also, the impact of individual action timings on machine
throughput is analyzed. This timing analysis is enabled by the
(max,+) semantics and the available analysis techniques in
this domain that can easily be applied to the system models.
The current focus is on obtaining a complete specification for
nominal behavior in the product handling part of the machine.

There is a formal specification model of the product logis-
tics [1], that can be linked to the system model. However,
synthesis of the Activity-FSM is not feasible due to scalabil-
ity issues. Therefore, an important current research topic is
modular synthesis of the Activity-FSM to improve scalability.

V. RELATED WORK

Scenario-Aware Data Flow (SADF) [7] has a similar sep-
aration of concerns with respect to functionality and timing.
This formalism uses the same model of computation, (max,+)
algebra, to perform throughput analysis. Compared to SADF,
our formal modeling approach allows modular specification of
both the activities and the requirements to be imposed on the
ordering. Another advantage of our approach is the ability to
synthesize the FSM containing all allowed activity sequences.
These two advantages also apply with respect to (max,+)
automata. It is possible to convert a model in our formalism
to an FSM-SADF model. As studied in [13], each activity
can be mapped onto an SDF scenario, and the Activity-FSM
corresponds to the FSM in FSM-SADF. Note that an SDF
scenario is more general, since it can also contain cycles.

Other well known formalisms used for modeling and per-
formance analysis of manufacturing systems are timed au-
tomata [14], timed Petri nets [15], and job shop scheduling
with precedence constraints [16]. Timed automata extended
with game theory, timed games [17], allow synthesis of a
controller ensuring safe behavior and reaching a final state
eventually. Timed Petri nets allow performance analysis by
associating delay bounds with each place in the net [18]. In
both formal models, specification of timing and functionality
aspects is not compositional. Instead, a system with actions,
activities and resources is typically specified as described in
Section III-E, which supports the claim of a similar type of
scalability issues. In job shop scheduling, finding an optimal



controller is typically considered as a constraint satisfaction
problem. Here, all dependencies on job (activity) level and
operation (action) level are encoded using constraints. In this
formulation, there is also no separation of concerns with
respect to functionality and timing.

Modeling system operations as graphs is also done in other
domains. For instance in real-time systems [19], where also
deadlines and bounded inter-arrival times of actions play a
role. However, activities are assumed to be independent, which
means that there is no way to specify dependencies among the
activities, which we do by means of the Activity-FSM.

Our framework also resembles partial-order automata [20],
where each transition corresponds to a set of partial-ordered
traces. In our case, each activity transition in the Activity-
FSM also corresponds to a DAG describing multiple allowed
traces. However, in partial-order automata, after each transition
follows a synchronization point, which means that there is no
weak-sequencing.

VI. CONCLUSION

This paper introduces a new formal modeling approach that
allows compositional specification of both functionality and
timing of manufacturing systems. In the approach, behavior
in the system is abstracted using the concept of activities,
and the controller choices reside on this abstracted level. This
abstraction leads to a concise specification, and results in a
smaller state space for synthesis and analysis, compared to a
state space with full interleaving of low-level actions. Resource
management is handled at the lower level, without explicit
interaction with the controller. The semantics of the model
are expressed in the (max,+) domain, enabling the use of
existing performance analysis techniques to find an optimal
activity ordering. Our approach is illustrated on an example
manufacturing system and an industrial case study is given.

There are a number of next steps to extend the approach.
First, we want to look into the extension of dealing with
exceptional behavior and external disturbances. In such a
setting, the Activity-FSM will need to be extended with
uncontrollable transitions that capture this uncontrollable be-
havior. Second, specification of functional requirements is now
modeled directly using automata. In principle however, there
are many other formalisms that may be better suited to specify
requirements. For example, extended finite automata [21] can
be used, where data variables are added to finite automata. This
enables the use of state-based requirements [22], which allows
requirements to refer to states of other automata. Third, in the
industrial use of the modeling formalism, there are scalability
challenges in synthesis of the Activity-FSM. Therefore, we are
investigating several approaches to reduce the state space that
needs to be explored using partial order reduction techniques,
and the use of modular synthesis techniques.
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