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Abstract

This paper adopts a spatial probit approach to explain interaction ef-
fects among geographical units when the dependent variable takes the
form of a binary response variable and state transfers occur at differ-
ent moments in time. The model has two spatially lagged variables,
one for units that are still in state 0 and one for units that already
transferred to state 1. The parameters are estimated on observations
for those units that are still in state 0 at the start of the different
time periods, whereas observations on units after they transferred to
state 1, just as in the literature on duration modeling, are discarded.
Consequently, neighboring units that did not yet transfer may have a
different impact than units that already transferred. We illustrate our
approach with an empirical study of the adoption of inflation target-
ing for a sample of 58 countries over the period 1985–2008.
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1 Introduction

Spatial binary response models have seen increasing use in the spatial econo-

metrics literature. This holds especially for the spatial probit model based

on the normal distribution, on which we focus in this paper. Spatial probit

may be used to explain interaction effects among geographical units when

the dependent variable takes the form of a binary response variable. How-

ever, one shortcoming of this model is that it cannot be fruitfully used to

explain the transition from one state to another when this transition for one

geographical unit takes place at a different moment in time than for another

unit.

Suppose there are two states, 0 and 1, that yi denotes the state a partic-

ular unit i (i = 1, . . . , N) is in, and that unit i transfers from state 0 to state

1 at time ti (t = 1, . . . , T ). We are interested in the determinants of transfer

from state 0 to state 1. This paper proposes a spatial probit model with two

spatially lagged variables, one for units that are still in state 0 and one for

units that already transferred to state 1. The parameters of this model will

be estimated based on observations of those units that are still in state 0 at

the start of the different time periods being considered; observations on units

after they transferred to state 1 are removed. The dependent variable and

the first spatial term are both specified in terms of unobserved choices, i.e.,

the propensity towards state 1, while the second spatial term is specified in

terms of observed choices, i.e., the actual outcomes. Consequently, we allow

neighboring units that did not yet transfer to have a different impact than

units that already transferred.
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Our setting differs from LeSage et al. (2011), who investigate the decision

of firms in New Orleans to reopen their stores dependent on the decision made

by other firms 0-3 months, 0-6 months, and 0-12 months in the aftermath

of Hurricane Katrina. However, since they use their data in cross-section

rather than splitting up the sample into different time periods, they implicitly

assume that the transition to state 1 of all firms that reopened their stores

took place at the same point in time. As a result, they cannot answer the

question why some firms reopened their stores earlier than others and which

role the interaction among firms at different points in time played in this

transition process.

Mukherjee and Singer (2008) analyze the decision of 78 countries to adopt

a monetary policy strategy known as inflation targeting dependent on the de-

cision taken by other countries using time-series cross-section data over the

period 1987–2003. Due to the fact that the coefficient of this interaction term

is positive, the probability that a country will transfer to state 1 increases

if other countries have preceded. However, by just pooling cross-sectional

data over time, they implicitly assume that the period that has expired since

a neighboring country has taken a positive decision, has no impact. In ad-

dition, they assume that neighboring countries that did not take a positive

decision yet, have the same impact as countries that already adopted inflation

targeting.

These and related issues have been widely discussed in the literature

on duration modeling (see Cameron and Trivedi, 2005, Chapter 17 for an

excellent overview). Generally, duration models are used to explain the time

τi that has passed to the moment when unit i transfers from state 0 to state
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1.1 This literature has produced two results that are relevant to our study.

Firstly, if the data are observed in discrete time intervals, one can use a

discrete-time transition model, since in each time interval two outcomes are

possible: the transition takes place or it does not (Cameron and Trivedi, 2005,

p. 602). A probit model based on the normal distribution function which

restricts the coefficients of the regressors to be constant over time, except

for the intercept, is then a straightforward and legitimate choice. Secondly,

observations on units after they transferred to state 1 are generally removed

from the sample. This is because explanatory variables that change over time

may exhibit feedback and hence may not be strictly exogenous; once a unit

has transferred to state 1, the explanatory variables may change as a result

of this transition.

The standard probit model as suggested in Cameron and Trivedi (2005)

for duration data is not appropriate for our setting since individual units are

treated as independent entities in duration models. Interaction effects result

in additional complications. In duration models the process that is observed

may have begun at different points in calendar time for different units in

the sample. In other words, the models consider relative time rather than

calendar time. In our setting not only the time that has passed before units

transfer to state 1 is important, but also the time that has passed relative

to the transfer of other units. Therefore, the transfer process can only be

modeled adequately if the starting point of the observation period is the same

for every unit in the sample.

The paper is structured as follows. Section 2 summarizes the literature

1A well-known example is the Cox proportional hazard model (Cox, 1972).
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on the basic spatial probit model, its extensions and estimation issues. A

detailed description of our model is provided in Section 3. Section 4 illustrates

our approach with an empirical study of the adoption of inflation targeting

for a sample of 58 countries over the period 1985–2008. Section 5 concludes.

2 Spatial probit models: a review

The basic spatial probit model

The basic spatial probit model is a linear regression model with spatially

correlated error terms εi for a cross-section of N observations (i = 1, . . . , N).

In vector notation, the spatial error probit model reads as

Y ∗ = Xβ + ε, ε = λWε+ v, (1)

where Y ∗ is an N × 1 vector consisting of one observation on the latent

dependent variable for every unit in the sample, and X is an N ×K matrix

of explanatory variables with parameters contained in a K × 1 vector β.

ε = (ε1, . . . , εN)′ and v = (v1, . . . , vN)′ represent the error terms of the model;

ε reflects the spatially correlated error term with coefficient λ, while v follows

a multivariate normal distribution with mean 0 and variance I. We use I

rather than σ2I here since β and σ2 cannot be separately identified. For

this reason, σ2 is set to 1. W is an N ×N pre-specified non-negative spatial

weights matrix describing whether or not the spatial units in the sample are

neighbors of each other. Its diagonal elements are zero, since no unit can be

viewed as its own neighbor. Usually, the spatial weights matrix is normalized
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such that the elements of each row sum to one. The spatial error model is

consistent with a situation where determinants of the dependent variable

omitted from the model are spatially autocorrelated, and with a situation

where unobserved shocks follow a spatial pattern. The spatial error probit

model in (1) can be rewritten as

Y ∗ = Xβ + ε = Xβ + (I − λW )−1v, (2)

which implies that the covariance matrix of ε isΩλ = [(I−λW )′(I−λW )]−1.

The basic problem that needs to be solved in estimating this model is

that the likelihood function cannot be written as the product of N one-

dimensional normal probabilities as is the case with the standard (non-

spatial) probit model. This is because the individual error terms εi (i =

1, . . . , N) are dependent on each other, as a result of which the likelihood

function

L(β, λ) =

∫
Y ∗

1

(2π)N/2|Ωλ|1/2
exp

{
−1

2
ε′Ω−1

λ ε

}
dε, (3)

is an N -dimensional integral.

Another problem might be the inversion of the matrix (I − λW ) for

large values of N when using a numerical algorithm to find the optimum

of λ, especially if this inversion needs to be repeated several times. This is

because the number of steps most practical algorithms require to determine

the inverse of an N × N matrix is proportional to N3. Nevertheless, for

small or moderate values of N (<1000), as in most empirical studies, this
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is not really a problem. The spatial error probit model has mainly been

used to present solutions to these methodological problems, see McMillen

(1992), Pinkse and Slade (1998), LeSage (2000), Beron and Vijverberg (2004),

Fleming (2004), Klier and McMillen (2008), but it has rarely been used in

empirical applications. One exception is Pinkse and Slade (1998), who adopt

this model to explain the location choice of certain economic activities.2

The spatial lag probit model

Another popular spatial probit model is the spatial lag probit model: a linear

regression model with endogenous interaction effects among the unobserved

dependent variable

Y ∗ = ρWY ∗ +Xβ + v, (4)

where ρ represents the spatial autoregressive coefficient. Endogenous in-

teraction effects are typically considered as the formal specification for the

equilibrium outcome of a spatial or social interaction process, in which the

value of the dependent variable for one agent is jointly determined with that

of neighboring agents. By rewriting the spatial lag probit model as

Y ∗ = (I − ρW )−1Xβ + (I − ρW )−1v = (I − ρW )−1Xβ + ε, (5)

it can be seen that the covariance matrix of ε in this model is similar to that

of the spatial error probit model, Ωρ = [(I−ρW )′(I−ρW )]−1, the difference

2Partly because of its mathematical convenience, Bolduc et al. (1997) replace probit
by the logit specification in their empirical application; whereas the probability P (y1 = 1)
has an analytical solution when adopting the logit specification, the probit specification
has not.
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being that the parameter λ is replaced by ρ. To estimate this model, not only

the integration of N -dimensional integral needs to be accounted for, but also

the endogeneity of the variable WY ∗. Many studies have considered this

model from a methodological viewpoint: McMillen (1992), LeSage (2000),

Beron and Vijverberg (2004), Fleming (2004), Klier and McMillen (2008),

LeSage and Pace (2009, Chapter 10), Franzese Jr. and Hays (2010), Smirnov

(2010), Pace and LeSage (2012). In contrast to the spatial error probit model,

it has also been used in many empirical studies, among which, Beron et al.

(2003), Mukherjee and Singer (2008), and LeSage et al. (2011).3

An important variant of the spatial lag probit model for the analysis to

be conducted in this paper is

Y ∗ = ρWY +Xβ + v, (6)

where the latent dependent variable Y ∗ depends on observed choices repre-

sented by WY rather than unobserved ones. The only application of this

model we could find in the spatial econometrics literature is Qu and Lee

(2012). They derive LM tests for spatial correlation in a standard probit

model not only if the alternative model is Equation (4) but also if the al-

ternative model is Equation (6). In addition, they consider Tobit models.

Soetevent and Kooreman (2007) apply Equation (6) to analyze social in-

teractions in high school teen behavior. They assume that the unobserved

choice of individual i depends on the observed choices of other individuals.

One of the basic problems of this interaction model is that it does not have

3Klier and McMillen (2008) replace the probit by the logit specification.
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a unique equilibrium, but different equilibria depending on the sign of the

interaction parameter ρ and on the sample size N (Soetevent and Kooreman,

2007, Propositions 2 and 3). To estimate the model they assume that the

probability that one particular equilibrium occurs is equal to one over the

total number of equilibria.

Extensions of the spatial probit model

The spatial probit model has been extended further in several ways. LeSage

and Pace (2009) present a spatial probit model where more than two al-

ternatives are observed that can be ordered. Bhat et al. (2010) deal with

ordered-response models in general, among which probit and logit. Wang and

Kockelman (2009) construct a dynamic ordered spatial error probit model.

Apart from spatial correlation, they add a (latent) dependent variable lagged

in time to control for temporal dependence in the data. Flores-Lagunes and

Schnier (2012) extend the spatial error probit model to a so-called Tobit

type II model, i.e., they first transform the dependent variable into a binary

variable and explain this variable by a spatial error probit model; then they

explain the magnitude of the dependent variable by a regular spatial error

model for only those units that are in state 1. Some studies also deal with het-

eroskedasticity (McMillen, 1992, LeSage, 2000, Fleming, 2004).4 Although

ignoring heteroskedasticity, when present, will result in inefficient parameter

estimates, the estimators are still consistent. Therefore, the basic problem

4Generally, the diagonal elements of the variance-covariance matrix Ωλ = [(I −
λW )′(I − λW )]−1 are not equal to each other. Some studies characterize this as het-
eroskedasticity too (Pinkse and Slade, 1998, Klier and McMillen, 2008). However, this
type of heteroskedasticity is explicitly taken into account in the estimation of the spatial
lag and the spatial error model.
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that needs to be solved, the multidimensional integration problem, remains

unaltered. It is perhaps for this reason that heteroskedasticity received less

attention in later work.

Estimation

The expectation-maximization (EM) algorithm adapted by McMillen (1992)

for the spatial probit model is one of the earliest attempts to deal with the

multidimensional integration problem. The E-step takes the expectation of

the log-likelihood function for the latent variable y∗i conditional on its ob-

served value yi and the parameter vector. The initial parameter vector is

obtained by estimating the spatial model as if the dependent variable is con-

tinuous, while subsequent values are obtained from the previous iteration.

The M-step maximizes the likelihood function for the parameter vector con-

ditional on the expected value of yi obtained from the E-step, which boils

down to estimating a regular spatial model for a continuous variable. These

steps are then repeated until the parameter vector converges. This algo-

rithm, however, has been severely criticized. Firstly, there is a substantial

computational burden in the repetitions of the algorithm (Fleming, 2004).

Both the EM algorithm and the maximization of the regular spatial model in

each M-step requires an iterative two-stage procedure. Secondly, it does not

produce an estimate of the variance-covariance matrix needed to determine

the standard errors and t-values of the parameter estimates (LeSage, 2000,

Fleming, 2004, Smirnov, 2010). It should be stressed that this is because of

another important methodological shortcoming that has not been discussed
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in the literature before. Whereas the expectation of the latent variable y∗i in

the EM algorithm is determined conditional on the observed value yi of the

unit itself, it should be determined conditional on the observed values of all

other units. Consequently, this algorithm produces inconsistent parameter

estimates.

A similar type of problem applies to the Bayesian MCMC estimation

procedure initially developed by LeSage (2000). This procedure is based on

sequentially drawing model parameters from their conditional distributions.

This process of sampling parameters continues until the distribution of draws

converges to the targeted joint posterior distribution of the model parame-

ters. Two different sampling schemes are used: the Gibbs sampler for model

parameters that have standard conditional distributions (β, Y ∗), and the

Metropolis-Hastings sampler for the spatial parameter λ in the spatial error

model or ρ in the spatial lag model, both of which have a non-standard dis-

tribution (LeSage and Pace, 2009, Chapter 7). The key problem is to sample

Y ∗. In LeSage (2000), the individual elements of Y ∗ are obtained by sam-

pling from a sequence of univariate truncated normal distributions. In later

work, LeSage and Pace (2009, p. 285) point out that “this cannot be done

for the case of a truncated multivariate distribution” (emphasis in original).

Draws for individual elements y∗i should be based on the distribution of y∗i

conditional on all other N − 1 elements [y∗1, · · · , y∗i−1, y
∗
i+1, · · · , y∗N ]. Prob-

ably because James LeSage has made a Matlab routine of the (improved)

Bayesian MCMC estimator of the spatial lag probit model available at his

Web site www.spatial-econometrics.com, it has been frequently used in

empirical research (Bolduc et al., 1997, Mukherjee and Singer, 2008, Wang
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and Kockelman, 2009, LeSage et al., 2011). Another reason might be that

Bayesian MCMC is faster than other estimation techniques (Franzese Jr. and

Hays, 2010). One drawback of the Bayesian MCMC estimator is that it is

difficult to verify whether convergence actually occurs. In some experiments

we carried out it clearly did not, even though LeSage’s Matlab routine sim-

ply reported final estimation results after the pre-specified number of draws

had been passed through. In addition, the convergence to the joint posterior

distribution is sometimes sensitive to the choice of the prior distributions

(Franzese Jr. and Hays, 2010).

A third estimation method is the Generalized Method of Moments (GMM),

initially proposed by Pinkse and Slade (1998) for the estimation of a spatial

error probit model.5 To deal with the endogeneity of the spatially lagged

dependent variables in case of the spatial lag model, the variable WY ∗

is instrumented by [X WX . . .W gX], where g is a pre-selected constant.

Typically, one would take g = 1 or g = 2, dependent on the number of re-

gressors and the type of model (see Kelejian et al., 2004). To avoid repeated

inversions of the matrix (I − λW ), they linearize the spatial parameters

around the non-spatial parameter values that are obtained from a standard

(non-spatial) probit or logit model. GMM studies do not specify the dis-

tribution function of the error terms, and therefore do not solve the multi-

5Klier and McMillen (2008) use the same technique to estimate a spatial lag logit model.
Following these two studies, Diallo and Geniaux (2011) propose a GMM estimator for a
logit model with both a spatially lagged dependent variable and a spatially autocorrelated
error term. Flores-Lagunes and Schnier (2012) develop an estimator for their so-called
Tobit type II model. These studies criticize the Bayesian MCMC and ML estimation
methods for relying on the potentially inaccurate assumption of normally distributed er-
rors. Instead, they assume that the individual error terms vi are i.i.d. with mean zero and
variance σ2.
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dimensional integration problem. They take into account that the diagonal

elements of the covariance matrix are different from one unit to another by

scaling the explanatory variables Xi of each unit i by σi, X1/σi, where σi

represents the ith diagonal element of the covariance matrix of the error

term Ωp = [(I − pW )′(I − pW )]−1 with p = λ in case of the spatial error

model and p = ρ in case of the spatial lag model. However, they do no take

into account that the off-diagonal elements of this matrix are non-zero too.

Consequently, they overrule the basic notion underlying spatial economet-

ric models in general and spatial discrete-response models in particular that

units cannot be treated as independent entities. In other words, although

these studies are right that the ML and Bayesian methods rely on the po-

tentially inaccurate assumption of normally distributed error terms, they in

turn ignore the spatial interaction effects among the error terms.

Our paper adopts a maximum likelihood estimation method. Starting

from McMillen (1992), Beron and Vijverberg (2004) developed a Simulated

Maximum Likelihood (SML) estimator for the spatial lag probit model. This

simulation method is known as Recursive-Importance-Sampling (RIS) and

relies on Monte Carlo simulation of truncated multivariate normal distribu-

tions, as discussed by Vijverberg (1997). First, a lower-triangular Cholesky

matrix of the variance-covariance matrix of the error terms is determined,

and then the multidimensional integral in Equation (3) is evaluated. Origi-

nally, Vijverberg (1997) considered four different density functions: the logit,

normal, t and a transform of the Beta(2,2). Although relatively slow, Beron

and Vijverberg (2004) favor the normal distribution for its efficiency. They

also point out that the RIS-normal simulator is identical to the Geweke-
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Hajivassiliou-Keane (GHK) simulator (Börsch-Supan and Hajivassiliou, 1993,

Keane, 1993). The advantage of this estimation method is that it provides a

feasible and efficient algorithm to approximate the N -dimensional truncated

normal density function needed to maximize the log-likelihood function. A

more detailed explanation is given in the next section. Franzese Jr. and Hays

(2010) compare the performance of different estimation methods of the spa-

tial lag probit model using Monte-Carlo experiments and find that the RIS

simulator produces more efficient estimates of the spatial parameter ρ than

Bayesian MCMC. However, the RIS procedure turns out to be computation-

ally intensive and time-consuming. Recently, Pace and LeSage (2012) called

the GHK/RIS simulator one of the most effective techniques for computing

the N -dimensional truncated normal distribution. They also suggest sev-

eral sparse matrix algorithms to speed up computation time. Unfortunately,

these Matlab routines are not available yet.

3 Transfers at different moments in time

Model

In the Introduction it has been explained that the spatial probit model cannot

be fruitfully used to describe the transition from one state to another when

this transition for one geographical unit takes place at a different moment in

time than for another unit. To deal with this problem we assume that the

data are sorted; first the units that are in state 0 at the start of time period t

(Y 0∗
t ) followed by the units that are already in state 1 at the start of period
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t (Y 1∗
t ). We initially propose the following spatial probit model

 Y 0∗
t

Y 1∗
t

 = ρ

 W 00
t W 01

t

W 10
t W 11

t


 Y 0∗

t

Y 1∗
t

+

 X0
t

X1
t

β +

 v0
t

v1
t

 , (7)

where t = 1, . . . , T is an index for the time dimension. The N×N matrix Wt

describing the spatial arrangement of the units in the sample is partitioned

into four submatrices: W 00
t expresses spatial relations between the units that

are in state 0 at the start of period t; W 11
t between the units that are already

in state 1 at the start of t; and W 01
t and W 01

t describe spatial relations of

the units in state 0 with the units in state 1 (and vice versa) at the start of

period t. Since the number of spatial units in state 0 and 1 may be different

from one period to another, these submatrices are time dependent. This is

indicated by the subscript t.6

If in line with the literature on duration models observations on units after

they transferred to state 1 are removed from the sample, only the observation

with superscript 0 in the first line of this model remain. If N0
t denotes the

number of observations that are not yet in state 1 at the start of time period

t, the total number of observations to estimate the parameters of this model

amounts to
∑T

t=1 N
0
t . Due to the removal of observations that are in state

1, the expected value of the latent variable Y 1∗
t at the right-hand side is no

longer defined. Therefore, we replace the latent variable Y 1∗
t by the observed

variable Zt which is equivalent to Y 1
t . Furthermore, since it is reasonable

to assume that neighboring units that already transferred to state 1 have

6The dimensions of submatrices W 00
t , W 01

t , W 10
t , W 11

t are N0
t ×N0

t , N
0
t ×N1

t , N
1
t ×

N0
t and N1

t ×N1
t , respectively, where Nt = N0

t +N1
t , for all t.
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a different impact than neighboring units that are still in state 0, we allow

these two variables to have different coefficients ρ and δ. This yields

Y 0∗
t = ρW 00

t Y
0∗
t + δW 01

t Zt +X0
t β + v0

t . (8)

In sum, the first variable at the right-hand side,W 00
t Y

0∗
t , denotes the endoge-

nous interaction effect with neighboring units that are also in state 0. The

second variable at the right-hand side, W 01
t Zt, denotes the interaction effect

with neighboring units that already transferred to state 1. The first variable,

like the dependent variable, is specified in terms of unobserved choices, and

the second variable in terms of observed choices. In some studies, there are

units that are still in state 0 at the end of the observation period and units

that already transferred to state 1 before the start of the observation pe-

riod. In the first case, the sample is called right-censored; these observations

are covered by the first spatial term on the right-hand side of the regression

equation. In the second case, the sample is called left-censored; these obser-

vations are covered by the second spatial term on the right-hand side of the

regression.

Units that did not yet transfer may be affected by neighboring units that

also did not yet transfer, and vice versa, as a result of which the right-hand

side variable W 00Y 0∗
t needs to be treated as an endogenous explanatory

variable. Units that did not yet transfer may also be affected by neighboring

units that already transferred. However, since observations on units in time

periods after they transferred to state 1 are removed from the sample, units

that did already transfer cannot be affected by units that are still in state

16



0. Consequently, the right-hand side variable W 01Zt may be treated as

an exogenous rather than an endogenous explanatory variable.7 Hence, the

parameters in Equation (8) can be estimated similarly to those of a standard

spatial lag probit model, Equation (4).

Estimation

Based on strengths and weaknesses of different estimation methods discussed

in the previous section, we use the RIS/GHK-simulator for the normal dis-

tribution to obtain ML parameter estimates, described in Vijverberg (1997).

For this we need to evaluate the N -dimensional integral similar to Equation

(3). We explain the mechanisms behind the simulator using a simple exam-

ple. Assume that N = 3, Y = (1, 0, 1)′ and that the mean µ of vector Y ∗

corresponds to Equation (8) with variance-covariance matrix Ωρ, where Ωρ

is positive definite. Using the Cholesky decomposition, we can find a lower-

triangular matrix Q such that QQ′ = Ωρ. Taking qij as elements of Q, we

have:

y∗1 = µ1 + q11ν1 ≥ 0

y∗2 = µ2 + q21ν1 + q22ν2 ≤ 0

y∗3 = µ3 + q31ν1 + q32ν2 + q33ν3 ≥ 0

Note that ν1 follows a standard normal distribution truncated below by

−µ1/q11. Let z1 be a draw from this distribution.8 Conditional on z1, ν2

7This is the reason why we change the notation from Y 1
t to Zt in Equation (8).

8The procedure of drawing from a truncated standard normal distribution is the fol-
lowing. Let x ∼ N (0, 1) and x > a. Then the cumulative distribution function (cdf) of x
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follows a standard normal distribution truncated above by

−µ2 − q21z1

q22

Next, let z2 be a draw from the distribution of ν2. Finally, conditional on z1

and z2, ν3 follows a standard normal distribution truncated below by

−µ3 − q31z1 − q32z2

q33

,

and z3 is a draw from this distribution.

Since z1, z2, and z3 are independently distributed, the mean of p̃r =

(1− Φ(z1))Φ(z2)(1− Φ(z3)) is the joint probability that y∗1 ≥ 0, y∗2 ≤ 0 and

y∗3 ≥ 0. If we repeat this procedure R times, then

p̂ ≡ 1

R

R∑
r=1

p̃r

is a consistent estimator of the joint probability, known as the Recursive-

Importance-Sampling (RIS) estimator (Vijverberg, 1997, Beron and Vijver-

berg, 2004). The general form of the RIS simulated likelihood for the N -

is

F (x) =
Φ(x)− Φ(a)

1− Φ(a)
,

where Φ(·) is the cdf of the standard normal distribution. If u ∼ U(0, 1), then we can
draw x by solving u = F (x). This leads to:

x = Φ−1(u(1− Φ(a)) + Φ(a)).

If x < a, then a similar derivation method implies

x = Φ−1((1− u)Φ(a)).
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variate case

p̂ ≡ 1

R

R∑
r=1

{
N∏
j=1

Φ(zj,r)

}
(9)

is used to find the standard maximum-likelihood estimator of L(β, ρ)

L(β, ρ) =

∫
Y 0∗
t

1

(2π)N/2|Ωρ|1/2
exp

{
−1

2
v′Ω−1

ρ v

}
dv,

by the following optimization

min
β,ρ
{− logL(β, ρ)}

subject to ρ ∈ (−1/ωmin, 1). Note that δ is an element of β. Finally, we

compute the Hessian H of − logL(β, ρ) numerically and calculate standard

deviations as the square root of the diagonal elements of H−1.

Lee (2004) and Qu and Lee (2012) show that the ML estimator of re-

spectively the spatial lag and the spatial probit model produces consistent

and asymptotically normal estimates, provided that the following regularity

conditions are satisfied. W should be a nonnegative matrix of known con-

stants. The diagonal elements are set to zero by assumption. The matrix

(I − ρW ) should be nonsingular. For a row-normalized W , this condition

is satisfied as long as ρ is in the interior of (1/ωmin, 1), where ωmin denotes

the smallest characteristic root of W . Furthermore, the row and column

sums of the matrices W and {(I − ρW )−1} should be uniformly bounded in

absolute value as N goes to infinity. In a cross-sectional setting, the row and

column sums of W should also not diverge to infinity at a rate equal to or

faster than the rate of the sample size N before W is row-normalized, but in
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a panel data setting this condition is not needed, provided that time-period

fixed effects are not included (Kelejian et al., 2004).

Direct and indirect effects

It is well-known that the point estimates of the parameter vector β in the

probit model Y ∗ = Xβ + v and in the spatial lag model with a continuous

dependent variable Y = ρWY + Xβ + v are not equal to their marginal

effects, see respectively Cameron and Trivedi (2005, p.466) and LeSage and

Pace (2009, pp.293-297). LeSage et al. (2011) consider the marginal effects

of the spatial probit model by combining these two models. When applied

to our model set forth in Equation (8), the matrix of partial derivatives of

the expected value of Y with respect to the kth explanatory variable of X

in unit 1 up to unit N (say xik for i = 1, . . . , N , respectively) at a particular

moment in time t takes the form

(
∂E(Yt)
∂x1k

. . . ∂E(Yt)
∂xNk

)
=


∂E(y1t)
∂x1k

. . . ∂E(y1t)
∂xNk

...
. . .

...

∂E(yNt)
∂x1k

. . . ∂E(yNt)
∂xNk

 = diag(φ(η))(I−ρW 00
t )−1INβk

(10)

where η = (I − ρW 00
t )−1(δW 01

t Zt +X0
t β) denotes the vector of predicted

values of Y 0
t .9 The first matrix on the right-hand side of this equation is a

diagonal matrix of order N whose elements φi represent the probability that

the dependent variable takes its observed value, dependent on the observed

values of the other units in the sample. For this reason, each observation has

9A similar expression applies to the explanatory variable W 01
t Zt with coefficient δ.
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its own mean and variance. Define the matrix Π as Π = ηη′, πij as the

(i, j)th element of Π , Π−ii as the (N − 1)× (N − 1) matrix that is obtained

after removing both row and column i, and π−i as the ith row vector and πi−

as the ith column vector removed from Π . Then φi (i = 1, . . . , n) evaluates

the normal probability density function for the observed value of yi, which is

either 0 or 1, with mean µi+π−iΠ
−1
−ii(yi−µi) and variance πii−π−iΠ−1

−iiπi−.

The second matrix on the right-hand side is an N × N matrix whose

diagonal elements represent the impact on the dependent variable of unit 1

up to N if the kth explanatory variable in the own unit changes, while its

off-diagonal elements represent the impact on the dependent variable if the

kth explanatory variable in another unit changes. The first is called a direct

effect and the second an indirect or spatial spillover effect. Since both the

direct and indirect effects are different for different units in the sample, the

presentation of these effects is a problem. If we have N spatial units and

K explanatory variables, we obtain K different N × N matrices of direct

and indirect effects. Even for small values of N and K, it may already be

rather difficult to report these results compactly. LeSage and Pace (2009)

therefore propose to report one direct effect measured by the average of the

diagonal elements of the matrix on the right-hand side of Equation (10),

and one indirect effect measured by the average of either the row sums or

the column sums of the non-diagonal elements of that matrix. Since the

numerical magnitudes of these two calculations of the indirect effect are the

same, it does not matter which one is used. Usually, the indirect effect is

interpreted as the impact of changing a particular element of an exogenous

variable on the dependent variable of all other units, which corresponds to the
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average column effect. In contrast to LeSage et al. (2011) and other studies

in the spatial econometrics literature, the right-hand side of our model is

not independent of time t. To obtain one summary indicator for the direct

effect and for the indirect effect of every explanatory variable in the model,

we therefore propose to also average the outcomes over time.

The standard errors and t-values of the direct and indirect effects esti-

mates are more difficult to determine, because they depend on βk, ρ and the

elements of the spatial weights matrix W 00
t in a rather complicated way. In

order to draw inferences regarding the statistical significance of the direct

and indirect effects, LeSage and Pace (2009, p. 39) suggest simulating the

distribution of the direct and indirect effects using the variance-covariance

matrix implied by the maximum likelihood estimates. If the full parameter

vector θ = (ρ, δ,β′)′ is drawn D times from N(θ̂, AsyVar(θ̂)), the standard

deviation of each summary indicator can be approximated by the standard

deviation of the mean value over these D draws, and the significance by

dividing each summary indicator by the estimated corresponding standard

deviation.

4 Illustration

To illustrate our model, we analyze the transition of countries from one

type of monetary policy strategy to another. Specifically, we focus on the

adoption of inflation targeting, a monetary policy strategy that involves the

public announcement of medium-term targets for inflation and a strong com-

mitment to price stability as a final monetary policy objective (Mishkin and
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Schmidt-Hebbel, 2001). The decision of countries to adopt inflation target-

ing is influenced by their own characteristics as well as choices of neighboring

or geographically proximate countries that decide to either adopt inflation

targeting or use an alternative monetary strategy. Hence, the testable hy-

potheses are whether endogenous interaction effects affect the probability of

countries to adopt inflation targeting and whether the explanatory variables

of inflation targeting cause significant spatial spillover effects.

In our analysis, we assume that in each time period (year) a country

can be in one of two possible states: state 1 corresponds to the adoption

of inflation targeting, while state 0 corresponds to an alternative monetary

strategy. We are interested in estimating the probability of transition from

non-inflation targeting to inflation targeting, i.e. from state 0 to state 1.

Data description

Our panel dataset is taken from Samarina and de Haan (2013) and consists

of 58 countries over the period 1985–2008; 29 countries adopted inflation

targeting during this period, whereas 29 countries did not. Table A.1 in

the Appendix provides the list of countries in our dataset. We use official

adoption dates based on central banks’ announcements and follow the ‘half-

year-rule’: if a country adopts inflation targeting in the second half of year

t (July-December), the adoption year is (t+ 1), otherwise the adoption year

is t.

We adopt the spatial weight matrix W , in which the elements wij = 1

if country j belongs to the 10 nearest neighbors of country i in the sample,
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and 0 otherwise. The diagonal elements in W are set to zero. The weight

matrix is row-normalized before it is split into submatrices.

The matrix X includes six explanatory variables that are associated

with countries’ motivation for adopting inflation targeting: inflation, output

growth, the exchange rate regime, government debt, financial development

and central bank instrument independence. For details see Samarina and

de Haan (2013).

Table A.2 in the Appendix describes the explanatory variables and their

data sources. The explanatory variables are assumed strictly exogenous and

although not reported here do not highly correlate with each other. Unfortu-

nately, the data set is not complete; the percentage of missing observations

on the different explanatory variables ranges from 1% to 13% of all observa-

tions. In order to have a complete dataset, an imputation technique is used

for filling in missing observations.10

Estimation results

Table 1 reports the estimation results when the explanatory variables are

included without lags.11 We record the coefficient estimates and their t-

statistics for three specifications of the spatial probit model.

Column (1) of Table 1 reports the estimation results for the standard spa-

tial lag probit model when pooling the cross-sectional data over time. This

model can be obtained from Equation (4) by adding a subscript t, which

10We apply the Expectation-Maximization (EM) algorithm for missing values imputa-
tion, which is described in Dempster et al. (1977) and Schafer (1997).

11Outcomes in which explanatory variables are included with a one-year lag to avoid
potential endogeneity problems are qualitatively similar and hence not reported here.
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runs from 1 to T , to the variables and the error terms of that equation. This

model is similar to the one employed in Mukherjee and Singer (2008) for

their analysis of inflation targeting adoption. We find that the coefficient

estimate ρ of the endogenous interaction effects is positive and significant,

while Mukherjee and Singer (2008) report a positive but insignificant result.

One explanation is that we use data over a longer time period, 1985-2008

versus 1987-2003 in Mukherjee and Singer (2008). The findings for two vari-

ables used in their study and ours—exchange rate regime and central bank

independence—are comparable, while the result for inflation is different, both

in terms of the sign and significance of the estimate.

Table 1: Estimation Results - Spatial Lag Probit

Variables (1) (2) (3)
Standard spatial probit Our spatial probit ...with duration variable

ρ 0.222 *** 0.137 0.022
(4.20) (1.01) (0.17)

δ 0.371 −1.525 **
(0.77) (−2.52)

Inflation −8.850 *** −0.203 −4.018 **
(−6.98) (−0.27) (−2.22)

Output growth −0.006 −0.042 * −0.076 ***
(−0.39) (−1.87) (−2.66)

Exchange rate regime 0.950 *** 0.764 *** 0.773 ***
(9.93) (4.25) (3.97)

Government debt −0.005 *** −0.003 −0.006 *
(−3.28) (−1.10) (−1.85)

Financial development −0.253 *** −0.235 −0.437 **
(−2.82) (−1.31) (−2.14)

Central bank instrument independence 0.550 *** 0.506 *** 0.367 *
(5.97) (2.60) (1.79)

Constant −0.283 −1.823 *** −1.963 ***
(−1.59) (−5.33) (−4.26)

Duration of non-IT period 0.082 ***
(3.41)

Observations 1392 1127 1127
Log-Likelihood −500.8 −116.0 −105.8

Notes: Table 1 reports coefficient estimates and their t-values (in parentheses). *, ** and *** denote
significance at 10%, 5% and 1% significance level, respectively. Column (1) shows the results for a
standard spatial lag probit model, column (2) reports estimation results for our spatial probit model,
while column (3) extends the model by controlling for temporal dependence.
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Column (2) shows estimation results for our spatial probit model with

two spatially lagged variables and full set of regressors. The results suggest

that the coefficients of both spatial lags are insignificant. Note that the value

of the log-likelihood is much higher in our specification.

The estimation of our spatial probit model, similarly to discrete-time

duration models, may face the potential temporal dependency problem. This

means that the probability of a country to adopt inflation targeting in year t

may depend on the duration of the non-inflation targeting (non-IT) period,

i.e., the time that has passed from the start of the sample period until the

inflation targeting adoption date. Ignoring temporal dependence may lead to

inefficiency and inaccurate statistical inference (Beck et al., 1998). To correct

for temporal dependence, we follow the approach of Beck et al. (1998) and

construct a duration variable that counts the number of years from the start

of the sample period until the inflation targeting adoption date.12

Column (3) reports the estimation results when the duration variable is

added as a regressor to our spatial probit model. Importantly, the coefficient

estimate of the duration variable turns out to be significant with a positive

sign, implying that the longer is the non-IT period, the more likely are coun-

tries to adopt inflation targeting. Hence, this specification of our spatial

probit model is preferred.

The coefficient estimate of the endogenous interaction effect in Column

(3), ρ, has again a positive sign. This indicates that countries that adopt

inflation targeting in the current period, i.e. transfer from state 0 to state 1

12Alternatively, one could generate a set of time dummies that mark each non-inflation
targeting duration period. However, including 24 dummies leads to a substantial loss of
degrees of freedom and a substantial increase of computation time.

26



in year t, have a positive effect on the probability of other countries to make

the same decision in that period. However, in contrast to the pooled model,

this result is no longer statistically significant.

The coefficient estimate of the spatial interaction effect with countries

that already adopted inflation targeting before period t, δ, is significant with

a negative sign. There are several explanations for this negative spatial in-

teraction effect. An intuitive explanation for the negative sign of δ is that

more countries adopt inflation targeting as time elapses, as a result of which

there are less countries in the sample left that did not transfer yet. There-

fore, over time the probability to adopt inflation targeting becomes lower as

the number of neighboring countries that can decide to switch, diminishes.

Another explanation is that the explanatory variables of countries that did

and did not yet adopt inflation targeting take different values and are treated

differently. Whereas these explanatory are part of the model for the latter

group of countries, they are not for the former group since observations on

these countries are removed from the sample. Consequently, the impact these

countries have on countries that are still considering inflation targeting only

runs through the spatial interaction coefficient, which therefore also captures

the effect of any value changes in these explanatory variables.

Additionally, we find that countries with lower output growth, more flex-

ible exchange rate regimes and lower debt are more likely to adopt inflation

targeting. Financial system development has a negative significant influence

on the probability to adopt inflation targeting, while the estimate for central

bank instrument independence is significant with a positive sign. It should be

noted that differences between these variables in the pre- and post-inflation
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targeting periods affect the magnitude of the spatial interaction coefficient

too, which therefore should be interpreted as the net effect of all value changes

in all explanatory variables between these two periods.

Direct and indirect effects

Table 2 shows the estimates of direct, indirect, and total effects of the three

models, as reported in Table 1. They are used to measure the effects of

changes in explanatory variables on the probability of a particular country

to adopt inflation targeting (direct effects), as well as the spatial spillover

effects of explanatory variables on neighboring countries (indirect effects).

The results show that only two direct effects and not one single spatial

spillover effect is significant in our model specifications (2) and (3), while both

five direct and five spatial spillover effects appear to be (weakly) significant

in the standard spatial probit model (1). Additionally, the estimated effects

in model (1) tend to be larger in magnitude (absolute values) than their

counterparts in models (2) and (3). Thus, using a standard spatial probit

approach to analyze state transfers at different moments in time (on the

example of inflation targeting adoption) leads to overly optimistic statistical

inference and largely overestimated direct and, above all, spatial spillover

effects. Once the model specification is altered, as in our spatial probit with

two spatial terms and duration dependence, we do not find any evidence in

support of spatial spillover effects.
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Table 2: Marginal effects

Variables Direct effects Indirect effects Total effects

(1) Standard spatial probit

Inflation −1.919 *** −0.558 *** −2.477 ***
(−9.02) (−2.74) (−6.75)

Output growth −0.002 −0.001 −0.002
(−0.56) (−0.51) (−0.55)

Exchange rate regime 0.208 *** 0.062 ** 0.270 ***
(6.87) (2.27) (4.80)

Government debt −0.001 *** −0.0003** −0.002 ***
(−3.00) (−2.06) (−2.88)

Financial development −0.056 *** −0.016 * −0.072 ***
(−2.97) (−1.91) (−2.77)

Central bank instrument independence 0.116 *** 0.034 ** 0.150 ***
(5.35) (2.30) (4.37)

(2) Our spatial probit

Countries that already adopted IT (Zt) −0.251 −0.037 −0.288
(−1.36) (−0.71) (−1.35)

Inflation −0.036 −0.006 −0.042
(−0.30) (−0.19) (−0.29)

Output growth −0.005 −0.001 −0.006
(−0.74) (−0.47) (−0.72)

Exchange rate regime 0.110 0.018 0.128
(1.29) (0.71) (1.25)

Government debt 0.002 0.0002 0.002
(0.46) (0.19) (0.43)

Financial development −0.032 −0.005 −0.037
(−0.91) (−0.50) (−0.89)

Central bank instrument independence 0.067 0.011 0.078
(1.29) (0.68) (1.22)

(3) Our spatial probit with a duration variable

Countries that already adopted IT (Zt) −0.133 * −0.011 −0.145
(−1.78) (−0.47) (−1.49)

Inflation −0.274 −0.020 −0.295
(−1.54) (−0.46) (−1.38)

Output growth −0.006 −0.001 −0.006
(−1.34) (−0.41) (−1.14)

Exchange rate regime 0.058 0.006 0.065
(1.45) (0.48) (1.23)

Government debt −0.0004 −0.0000 −0.0004
(−1.11) (−0.33) (−0.98)

Financial development −0.030 −0.002 −0.032
(−1.44) (−0.48) (−1.29)

Central bank instrument independence 0.027 0.003 0.030
(1.20) (0.47) (1.09)

Duration of non-IT period 0.006 * 0.001 0.006
(1.88) (0.50) (1.61)

Notes: Table 2 reports direct, indirect, and total effects with t-values (in parentheses) for models (1), (2),
and (3) as in Table 1. *, ** and *** denote significance at 10%, 5% and 1% significance level, respectively.
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This also follows from the year when different countries adopted infla-

tion targeting (see Table A.1). For instance, countries that adopted inflation

targeting in 2001, namely Hungary, Iceland, Mexico, and Norway, are any-

thing but close neighbors to each other. Conversely, countries that are close

neighbors to each other, like Czech Republic, Poland, Hungary, Slovakia,

and Romania, adopted inflation targeting in various years, respectively 1998,

1999, 2001, 2005, and 2006. These two examples do not give much evidence

in favor of the hypothesis that if one country adopts inflation targeting a

neighboring country will also do so. Our model corroborates this finding,

whereas the standard spatial probit model that pools the data does not.

5 Conclusion

The spatial probit model can be employed to describe interaction effects

among geographical units when the dependent variable takes the form of

a binary response variable. Unfortunately, it cannot adequately deal with

transitions from one state to another when these transitions take place at

different moments in time for different geographical units.

This paper proposes a spatial probit model with two spatially lagged

variables, one for units that did not transfer to the other state yet, and one for

units that already transferred. Observations on units that made the transfer

from one state to the other are removed after the transfer. Hence, units that

already made the transfer cannot be affected by units that are still in the

original state. This allows us to treat the spatially lagged variable for units

that already transferred, as exogenous. The empirical model is estimated
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by maximum likelihood methods, using the Recursive Importance Sampling

simulator to evaluate the truncated multidimensional normal distribution.

We illustrate our approach with a study of the adoption of inflation tar-

geting for a sample of 58 countries over the period 1985–2008. We make a

distinction between interaction effects among countries that did not adopt in-

flation targeting yet and interaction effects of countries that already adopted

inflation targeting on countries that did not adopt yet. In contrast to previ-

ous studies, we find that the first interaction effect is insignificant, whereas

the second interaction effect that has not been considered in previous studies

turns out to be negative and significant. In addition, we find no evidence in

favor of spatial spillover effects.

Our spatial probit model has various applications in economics, business,

and political studies. The approach can also be used to explain contagion

of financial crises when countries enter crises at different time. Additionally,

studies on the introduction of new brands and firms’ entry decisions might

also include state transfers at different periods.
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Appendix

Table A.1: Country sample

Inflation targeting countries (29)

Country Adoption year Country Adoption year

Australia 1993 Norway 2001
Brazil 1999 Peru 2002
Canada 1991 Philippines 2002
Chile 1991 Poland 1999
Colombia 2000 Romania 2006
Czech Republic 1998 Slovakia 2005
Finland 1993 South Korea 1998
Ghana 2007 South Africa 2000
Guatemala 2005 Spain 1995
Hungary 2001 Sweden 1993
Iceland 2001 Switzerland 2000
Indonesia 2005 Thailand 2000
Israel 1992 Turkey 2006
Mexico 2001 United Kingdom 1993
New Zealand 1990

Non-inflation targeting countries (29)

Argentina Denmark Ireland Netherlands
Austria Egypt Italy Pakistan
Belgium Estonia Japan Panama
Bolivia France Latvia Portugal
Bulgaria Germany Lithuania Singapore
China Greece Luxembourg United States
Costa Rica India Malaysia Venezuela
Cyprus

Source: Samarina and de Haan (2013).
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Table A.2: Explanatory variables and data sources

Variable Description and data sources

Inflation Annual CPI inflation rate transformed as πt/100
1+πt/100

.
Sources: IFS IMF, Datastream.

Output growth Annual GDP growth rates, in %. Sources: IFS
IMF, WDI&GDF World Bank.

Exchange rate regime Dummy variable, 1 - floating exchange rate regime,
0 - fixed exchange rate regime. Source: Levy-
Yeyati and Sturzenegger (2005).

Government debt Central government debt as % of GDP. Sources:
Datastream, Jaimovich and Panizza (2010)

Financial development Private credit (domestic credit provided by the
banking sector)/GDP. Sources: WDI&GDF World
Bank.

Central bank instrument
independence

Dummy variable, 1 - central bank is instrument
independent, 0 - otherwise. Sources: Cukierman
et al. (2002), Arnone et al. (2007), central banks
laws.
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