163 research outputs found

    Spatial variations in lead isotopes, Tasman Element, eastern Australia

    Get PDF
    Lead isotope data from ore deposits and mineral occurrences in the Tasman Element of eastern Australia have been used to construct isotopic maps of this region. These maps exhibit systematic patterns in parameters derived from isotope ratios. The parameters include μ (238U/204Pb), as calculated using the Cumming and Richards (1975) lead evolution model, and the difference between true age of mineralisation and the Cumming and Richards lead isotope model age of mineralisation (Δt). Variations in μ coincide with boundaries at the orogen, subprovince and zone scales. The boundary between the Lachlan and New England orogens is accompanied by a decrease in μ, and within the Lachlan Orogen, the Central Subprovince is characterised by μ that is significantly higher than in the adjacent Eastern and Western subprovinces. Within the Eastern Subprovince, the Cu-Au-rich Macquarie Arc is characterised by significantly lower μ relative to adjacent rocks. The Macquarie Arc is also characterised by very high Δt (generally above 200 Myr). Other regions characterised by very high Δt include western Tasmania, the southeastern New England Orogen, and the Hodgkinson Province in northern Queensland. These anomalies are within a broad pattern of decreasing Δt from east to west, with Paleozoic deposits within or adjacent to Proterozoic crust characterised by Δt values of 50 Myr or below. The patterns in Δt are interpreted to reflect the presence of the two major tectonic components involved in the Paleozoic Tasman margin in Australia (cf., Münker, 2000): subducting proto-Pacific crust (Δt >150 Myr), and Proterozoic Australia crust (Δt < 50 Myr) on the over-riding plate. Proterozoic Australia crustal sources are interpreted to dominate the western parts of the Tasman Element and Proterozoic crust further to the west, whereas Pacific crustal sources are inferred to characterise western Tasmania and much of the eastern part of the Tasman Element. Contrasts in Δt between the Cambrian Mount Read Volcanics in western Tasmania and similar aged rocks in western Victoria and New South Wales make direct tectonic correlation between these rocks problematic

    PEArL: a systems approach to demonstrating authenticity in information systems design

    Get PDF
    The process of information systems (IS) design has been dominated by the demands inherent in providing a technical solution to a perceived problem or need. Engineering IS design methods applied in order to satisfy the problem situation tend to have a preoccupation with verifying specifications as being mathematically correct. Diffculties arise when the ideas underpinning verification are extended in an attempt to ‘prove’ the validity of a proposed design for an IS. A pure engineering approach does not facilitate a response to the subjective elements within social situations, which experience has shown to be essential in demonstrating the pertinence of new designs to those concerned. We suggest that, by applying interpretivist systems ideas, it is possible to support concerned individuals in reflecting upon crucial aspects of the inquiry, enabling those individuals to judge the relevance or ‘authenticity’ of the learning, according to their own values and beliefs. The elements of participants, engagement, authority, relationships and learning are suggested as being crucial. These make up the mnemonic PEArL, which is offered as an aide-mémoire for those concerned with IS design

    High-time Resolution Astrophysics and Pulsars

    Full text link
    The discovery of pulsars in 1968 heralded an era where the temporal characteristics of detectors had to be reassessed. Up to this point detector integration times would normally be measured in minutes rather seconds and definitely not on sub-second time scales. At the start of the 21st century pulsar observations are still pushing the limits of detector telescope capabilities. Flux variations on times scales less than 1 nsec have been observed during giant radio pulses. Pulsar studies over the next 10 to 20 years will require instruments with time resolutions down to microseconds and below, high-quantum quantum efficiency, reasonable energy resolution and sensitive to circular and linear polarisation of stochastic signals. This chapter is review of temporally resolved optical observations of pulsars. It concludes with estimates of the observability of pulsars with both existing telescopes and into the ELT era.Comment: Review; 21 pages, 5 figures, 86 references. Book chapter to appear in: D.Phelan, O.Ryan & A.Shearer, eds.: High Time Resolution Astrophysics (Astrophysics and Space Science Library, Springer, 2007). The original publication will be available at http://www.springerlink.co

    Accounting for International War: The State of the Discipline

    Full text link
    In studies of war it is important to observe that the processes leading to so frequent an event as conflict are not necessarily those that lead to so infrequent an event as war. Also, many models fail to recognize that a phenomenon irregularly distributed in time and space, such as war, cannot be explained on the basis of relatively invariant phenomena. Much research on periodicity in the occurrence of war has yielded little result, suggesting that the direction should now be to focus on such variables as diffusion and contagion. Structural variables, such as bipolarity, show contradictory results with some clear inter-century differences. Bipolarity, some results suggest, might have different effects on different social entities. A considerable number of studies analysing dyadic variables show a clear connection between equal capabilities among contending nations and escalation of conflict into war. Finally, research into national attributes often points to strength and geographical location as important variables. In general, the article concludes, there is room for modest optimism, as research into the question of war is no longer moving in non-cumulative circles. Systematic research is producing results and there is even a discernible tendency of convergence, in spite of a great diversity in theoretical orientations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69148/2/10.1177_002234338101800101.pd

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103
    corecore