207 research outputs found
Probing Primordial Non-Gaussianity with Large-Scale Structure
We consider primordial non-Gaussianity due to quadratic corrections in the
gravitational potential parametrized by a non-linear coupling parameter fnl. We
study constraints on fnl from measurements of the galaxy bispectrum in redshift
surveys. Using estimates for idealized survey geometries of the 2dF and SDSS
surveys and realistic ones from SDSS mock catalogs, we show that it is possible
to probe |fnl|~100, after marginalization over bias parameters. We apply our
methods to the galaxy bispectrum measured from the PSCz survey, and obtain a
2sigma-constraint |fnl|< 1800. We estimate that an all sky redshift survey up
to z~1 can probe |fnl|~1. We also consider the use of cluster abundance to
constrain fnl and find that in order to be sensitive to |fnl|~100, cluster
masses need to be determined with an accuracy of a few percent, assuming
perfect knowledge of the mass function and cosmological parameters.Comment: 15 pages, 7 figure
Statistical properties of the Burgers equation with Brownian initial velocity
We study the one-dimensional Burgers equation in the inviscid limit for
Brownian initial velocity (i.e. the initial velocity is a two-sided Brownian
motion that starts from the origin x=0). We obtain the one-point distribution
of the velocity field in closed analytical form. In the limit where we are far
from the origin, we also obtain the two-point and higher-order distributions.
We show how they factorize and recover the statistical invariance through
translations for the distributions of velocity increments and Lagrangian
increments. We also derive the velocity structure functions and we recover the
bifractality of the inverse Lagrangian map. Then, for the case where the
initial density is uniform, we obtain the distribution of the density field and
its -point correlations. In the same limit, we derive the point
distributions of the Lagrangian displacement field and the properties of
shocks. We note that both the stable-clustering ansatz and the Press-Schechter
mass function, that are widely used in the cosmological context, happen to be
exact for this one-dimensional version of the adhesion model.Comment: 42 pages, published in J. Stat. Phy
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Driven to excess? Linking calling, character and the (mis)behaviour of marketers
We are presently at a point of unique circumstantial convergence where recession, an increased emphasis on business ethics, and marketer’s reluctance to accept shifting social agendas have combined to identify the need for a new approach to marketing. Using concepts from the human resources, marketing and psychology literatures, and especially Erich Fromm’s ideas concerning economic character, this paper posits that marketers – as a professional community – are driven to promote consumerist outcomes; victims of an automaton amalgam of calling and character. The analysis suggests the vulnerability of both marketer and consumer are mutually reinforcing and that we need, somehow, to break this damaging cycle of dependence. We know little, however, about how marketers think and feel about their discipline, so this paper also promotes an agenda for marketer behaviour research, as a countervailing balance to a currently disproportionate focus on the consumer
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box
We present a method for measuring the cosmic matter budget without
assumptions about speculative Early Universe physics, and for measuring the
primordial power spectrum P*(k) non-parametrically, either by combining CMB and
LSS information or by using CMB polarization. Our method complements currently
fashionable ``black box'' cosmological parameter analysis, constraining
cosmological models in a more physically intuitive fashion by mapping
measurements of CMB, weak lensing and cluster abundance into k-space, where
they can be directly compared with each other and with galaxy and Lyman alpha
forest clustering. Including the new CBI results, we find that CMB measurements
of P(k) overlap with those from 2dF galaxy clustering by over an order of
magnitude in scale, and even overlap with weak lensing measurements. We
describe how our approach can be used to raise the ambition level beyond
cosmological parameter fitting as data improves, testing rather than assuming
the underlying physics.Comment: Replaced to match accepted PRD version. Refs added. Combined CMB data
and window functions at http://www.hep.upenn.edu/~max/pwindows.html or from
[email protected]. 18 figs, 19 journal page
E-retailing ethics in Egypt and its effect on customer repurchase intention
The theoretical understanding of online shopping behaviour has received much attention. Less focus has been given to the formation of the ethical issues that result from online shopper interactions with e-retailers. The vast majority of earlier research on this area is conceptual in nature and limited in scope by focusing on consumers’ privacy issues. Therefore, the purpose of this paper is to propose a theoretical model explaining what factors contribute to online retailing ethics and its effect on customer repurchase intention. The data were analysed using variance-based structural equation modelling, employing partial least squares regression. Findings indicate that the five factors of the online retailing ethics (security, privacy, non- deception, fulfilment/reliability, and corporate social responsibility) are strongly predictive of online consumers’ repurchase intention. The results offer important implications for e-retailers and are likely to stimulate further research in the area of e-ethics from the consumers’ perspective
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
- …