1,553 research outputs found

    Lorentz Transformation from Symmetry of Reference Principle

    Get PDF
    The Lorentz Transformation is traditionally derived requiring the Principle of Relativity and light-speed universality. While the latter can be relaxed, the Principle of Relativity is seen as core to the transformation. The present letter relaxes both statements to the weaker, Symmetry of Reference Principle. Thus the resulting Lorentz transformation and its consequences (time dilatation, length contraction) are, in turn, effects of how we manage space and time.Comment: 2 page

    The Proceedings of the National Māori Graduates of Psychology Symposium 2002: Making a difference

    Get PDF
    This document contains the full conference proceedings.This is the full proceedings of the National Māori Graduates of Psychology Symposium 2002. The proceeding include the following themes: Kia matāra - negotiating the challenges in Māori development, kia mau – recruitment and retention, Tuhia mai, whiua atu – research and methodology, tinia mai – interventions and treatment, taitaia i te ahi manuka – pride upon the skin

    Algebras for parameterised monads

    Get PDF
    Parameterised monads have the same relationship to adjunctions with parameters as monads do to adjunctions. In this paper, we investigate algebras for parameterised monads. We identify the Eilenberg-Moore category of algebras for parameterised monads and prove a generalisation of Beck’s theorem characterising this category. We demonstrate an application of this theory to the semantics of type and effect systems

    A three-year prospective study of 137 cases of acute leukaemia in Zimbabwe

    Get PDF
    A clinical study on the prevalence of leukemia in patients observed in Zimbabwean major hospitals.In the period December 1985 to November 1988 inclusive, 137 cases of acute leukaemia were diagnosed in patients of all age groups: 129 cases came under our direct care, and a further eight cases were diagnosed on blood and marrow films sent from elsewhere (four from Mpilo Hospital (Bulawayo) and four from other hospitals)

    Stochastic motion of test particle implies that G varies with time

    Full text link
    The aim of this letter is to propose a new description to the time varying gravitational constant problem, which naturally implements the Dirac's large numbers hypothesis in a new proposed holographic scenario for the origin of gravity as an entropic force. We survey the effect of the Stochastic motion of the test particle in Verlinde's scenario for gravity\cite{Verlinde}. Firstly we show that we must get the equipartition values for tt\rightarrow\infty which leads to the usual Newtonian gravitational constant. Secondly,the stochastic (Brownian) essence of the motion of the test particle, modifies the Newton's 2'nd law. The direct result is that the Newtonian constant has been time dependence in resemblance as \cite{Running}.Comment: Accepted in International Journal of Theoretical Physic

    Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value

    Get PDF
    We give a proof of stability of relativistic matter with magnetic fields all the way up to the critical value of the nuclear charge Zα=2/πZ\alpha=2/\pi.Comment: LaTeX2e, 12 page

    Elucidating Bacterial Gene Functions in the Plant Microbiome

    Get PDF
    There is a growing appreciation for the important roles microorganisms play in association with plants. Microorganisms are drawn to distinct plant surfaces by the nutrient-rich microenvironment, and in turn some of these colonizing microbes provide mutualistic benefits to their host. The development of plant probiotics to increase crop yield and provide plant resistance against biotic and abiotic stresses, while minimizing chemical inputs, would benefit from a deeper mechanistic understanding of plant-microbe interaction. Technological advances in molecular biology and high-throughput -omics provide stepping stones to the elucidation of critical microbiome gene functions that aid in improving plant performance. Here, we review -omics-based approaches that are propelling forward the current understanding of plant-associated bacterial gene functions, and describe how these technologies have helped unravel key bacterial genes and pathways that mediate pathogenic, beneficial, and commensal host interactions. Plants host large bacterial communities of importance to plant health and development. High-throughput -omics approaches have promoted elucidation of bacterial genes and pathways active at the plant-bacteria interface. We describe these methods and present functions performed by plant-associated bacterial genes that have been characterized by employing -omics methods

    Dimensionality of spin modulations in 1/8-doped lanthanum cuprates from the perspective of NQR and muSR experiments

    Full text link
    We investigate the dimensionality of inhomogeneous spin modulation patterns in the cuprate family of high-temperature superconductors with particular focus on 1/8-doped lanthanum cuprates. We compare one-dimensional stripe modulation pattern with two-dimensional checkerboard of spin vortices in the context of nuclear quadrupole resonance(NQR) and muon spin rotation(muSR) experiments. In addition, we also consider the third pattern, a two-dimensional superposition of spin spirals. Overall, we have found that none of the above patterns leads to a consistent interpretation of the two types of experiments considered. This, in particular, implies that the spin vortex checkerboard cannot be ruled out on the basis of available NQR/muSR experimental results.Comment: 6 pages, 2 figure
    corecore