
Strathprints Institutional Repository

Atkey, Robert (2009) Algebras for parameterised monads. [Proceedings Paper]

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9035017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Algebras for Parameterised Monads

Robert Atkey

LFCS, School of Informatics, University of Edinburgh, UK
bob.atkey@ed.ac.uk

Abstract. Parameterised monads have the same relationship to adjunc-
tions with parameters as monads do to adjunctions. In this paper, we in-
vestigate algebras for parameterised monads. We identify the Eilenberg-
Moore category of algebras for parameterised monads and prove a gener-
alisation of Beck’s theorem characterising this category. We demonstrate
an application of this theory to the semantics of type and effect systems.

1 Introduction

Monads [7] have a well-known relationship with algebraic theories [10], and have
also been used by Moggi [8] to structure denotational semantics for program-
ming languages with effects. Plotkin and Power [9] have used the connection to
algebraic theories to generate many of the monads originally identified by Moggi
as useful for modelling effectful programming languages. The operations of the
algebraic theories are in direct correspondence with the effectful operations of
the programming language.

In previous work [1] we have argued that a generalisation of monads, parame-
terised monads, are a useful notion for interpreting programming languages that
record information about the effects performed in the typing information [4].
The generalisation is to consider unit and multiplication operations for functors
T : Sop×S×C → C for some parameterising category S and some base category
C. The two S parameters are used to indicate information about the start and
end states of a given computation; thus a morphism x→ T (s1, s2, y) represents
a computation that, given input of type x, starts in a state described by s1 and
ends in a state described by s2, with a value of type y.

In this paper, we investigate the connection between parameterised monads
and a notion of algebraic theories with parameters. In our previous work [1],
we noted that parameterised monads arise from adjunctions with parameters—
pairs of functors F : S × C → A and G : Sop × A → C that, roughly, are
adjoint for every s ∈ S. Here, we extend this relationship to show that there
are natural notions of Kleisli category and Eilenberg-Moore category for param-
eterised monads, and that they are respectively initial and final in the category
of adjunctions with parameters giving a particular parameterised monad.

We then go on to consider the appropriate notion of algebraic theory for
parameterised monads. This turns out to require operations that have an arity,
as with normal algebraic theories, and also domain and codomain sorts that are
objects of S. We write such operations as σ : s2 ← sX1 , whereX is the arity. These

theories are similar to multi-sorted algebraic theories, except that all argument
positions in the operation have the same sort. Multi-sorted algebraic theories can
be represented as normal monads on presheaf categories over the set of sorts.
Our restriction of multi-sorted algebraic theories allows us to expose the sorts
in the parameters of the parameterised monad itself.

Algebras for our notion of algebraic theories with parameters are given by
functors a : Sop → C, with morphisms σa : a(s1)X → a(s2) for operations
σ : s2 ← sX1 .

A central result in relating algebraic theories and monads is Beck’s theorem
[2, 7], which characterises the Eilenberg-Moore category of T -algebras for a given
monad T in terms of the preservation and creation of coequalisers. In this paper,
we prove a generalisation of Beck’s theorem for parameterised monads.

As an application of the theory we have developed, we use algebraic theories
with parameters to give a semantics to a toy programming language that records
information about effects performed.

Overview In the next section we recall the definition of parameterised monad,
and develop the relationship between adjunctions with parameters and param-
eterised monads, in particular describing the category of algebras for a given
monad. In Section 3, we define a notion of algebraic theory with parameters,
where the free algebras give rise to parameterised monads. To show that the
category of such algebras is isomorphic to the category of algebras for the de-
rived monad, we prove a generalisation of Beck’s theorem in Section 4. In Section
5, we consider the case when the parameterising category has structure given by
functors and natural transformations. We then apply the results developed to
the semantics of type and effect systems in Section 6.

2 Parameterised Monads

Definition Assume a small category S. An S-parameterised monad on another
category C is a 3-tuple 〈T, η, µ〉, where T is a functor Sop × S × C → C, the
unit η is a family of arrows ηs,x : x→ T (s, s, x), natural in x and dinatural in s
and the multiplication µ is a family of arrows µs1s2s3x : T (s1, s2, T (s2, s3, x))→
T (s1, s3, x), natural in s1, s3 and x and dinatural in s2. These must make the
following diagrams commute:

T (s1, s2, T (s2, s2, x))

µs1s2s2x ((RRRRRRRRRRRRRRR T (s1, s2, x)
T (s1,s2,ηs2x)oo

1

��

ηs1T (s1,s2,x) //T (s1, s1, T (s1, s2, x))

µs1s1s2xvvlllllllllllllll

T (s1, s2, x)

T (s1, s2, T (s2, s3, T (s3, s4, x)))
µs1s2s3T (s3,s4,x)//

T (s1,s2,µs2s3s4x)

��

T (s1, s3, T (s3, s4, x))

µs1s3s4x

��
T (s1, s2, T (s2, s4, x))

µs1s2s4x // T (s1, s4, x)

Example 1. Every non-parameterised monad is a parameterised monad for any
category of parameters. Set T (s1, s2, x) = Tx.

Example 2. Our main motivating example for introducing the concept of param-
eterised monad is for modelling global state in a programming language, where
the type of the state may change over time. Take S to be a category of state
“types”, with a terminal object representing the empty state. Assume that C is
cartesian closed, and that there is a functor ·̂ : S → C, preserving the terminal
object. Take T (s1, s2, x) = (x× ŝ2) bs1 , with the evident unit and multiplication.

Example 3. It is well-known that (in Set) every monoid M gives a monad Tx =
M × x, where the unit of the monad is given using the unit of the monoid,
and likewise for multiplication. Analogously, every (small) category S0 gives
an S-parameterised monad, where S is a subcategory of S0. Set T (s1, s2, x) =
S0(s1, s2)× x. Monad unit is given using the identities of S0, and monad multi-
plication is given using composition.

Adjunctions with Parameters For categories C and A, an S-parameterised ad-
junction 〈F,G, η, ε〉 : C ⇀ A consists of functors F : S × C → A and G :
Sop ×A→ C, the unit ηs,x : x→ G(s, F (s, x)), natural in x and dinatural in s,
and the counit εs,a : F (s,G(s, a))→ a, natural in a and dinatural in s, satisfying
the following triangular laws:

G(s, a)
ηs,G(s,a)//

1 ''PPPPPPPPPPPP
G(s, F (s,G(s, a)))

G(s,εs,a)

��
G(s, a)

F (s, x)
F (s,ηs,x)//

1 ''PPPPPPPPPPPP
F (s,G(s, F (s, x)))

εs,F (s,x)

��
F (s, x)

By Theorem §IV.7.3 in Mac Lane [7], if we have a functor F : S × C → A
such that for every object s, F (s,−) has a right adjoint Gs : A→ C, then there
is a unique way to make a bifunctor G : Sop × A → C such that G(s,−) = Gs
and the pair form a parameterised adjunction.

Parameterised adjunctions have the same relationship to parameterised mon-
ads as adjunctions have to monads. First, we go from parameterised adjunctions
to monads:

Proposition 4. Given an S-parameterised adjunction 〈F,G, η, ε〉 : C ⇀ A,
there is an S-parameterised monad on C defined with functor G(s1, F (s2, x)),
unit ηs,x and multiplication µs1s2s3x = G(s1, εs2,F (s3,x)).

In the opposite direction, from monads to adjunctions, we have the same
situation as for non-parameterised monads. There are two canonical adjunctions
arising from a parameterised monad; the initial and terminal objects in the
category of adjunctions that define the monad.

First, we define the category of adjunctions that we are interested in. Given
an S-parameterised monad 〈T, η, µ〉 on C, the category PAdj(T) has as objects
S-parameterised adjunctions that give the monad T by the construction above;

and arrows f : (〈F,G, η, ε〉 : C ⇀ A) → (〈F ′, G′, η, ε′〉 : C ⇀ A′) are functors
f : A → A′ such that G = Id × f ;G′ and F ′ = F ; f and ε′s,fa = f(εs,a). Note
that, by the condition that all the adjunctions form the same parameterised
monad, all objects of this category have the same unit. The definition of arrow
is derived from the standard definition of a transformation of adjoints, extended
to parameterised adjunctions and restricted to those that define the same monad.

Kleisli Category For an S-parameterised monad 〈T, η, µ〉 on C, the Kleisli cate-
gory CT has pairs of objects of S and C as objects and arrows f : (s1, x)→ (s2, y)
are arrows x→ T (s1, s2, y) in C. Identities are given by the unit of the monad,
and composition is defined using the multiplication.

Proposition 5. The functors

FT : S × C → CT : (s, x) 7→ (s, x) : (g, f) 7→ ηs1,x;T (s1, g, f)
GT : Sop × CT → C : (s1, (s, x)) 7→ T (s1, s, x) : (g, f) 7→ T (g, s2, f);µs1s2s′2y

form part of an S-parameterised adjunction between C and CT . This adjunction
is initial in PAdj(T).

Eilenberg-Moore Category of Algebras The second canonical parameterised ad-
junction that arises from a parameterised monad is the parameterised version of
the Eilenberg-Moore category of algebras for the monad. For an S-parameterised
monad 〈T, η, µ〉 on C, a T -algebra is a pair 〈x, h〉 of a functor x : Sop → C and
an family hs1s2 : T (s1, s2, x(s2)) → x(s1), natural in s1 and dinatural in s2.
These must satisfy the diagrams:

T (s1, s2, T (s2, s3, x(s3)))
µs1s2s3x(s3)//

T (s1,s2,hs2s3)

��

T (s1, s3, x(s3))

hs1s3
��

T (s1, s2, x(s2))
hs1s2 // x(s1)

x(s)
ηs,x(s)//

1 %%KKKKKKKKKK T (s, s, x(s))

hs,s

��
x(s)

A T -algebra map f : 〈x, h〉 → 〈y, k〉 is a natural transformation fs : x(s)→ y(s)
such that

T (s1, s2, x(s2))
T (s1,s2,fs2)

//

hs1s2
��

T (s1, s2, y(s2))

ks1s2
��

x(s1)
fs1 // y(s1)

commutes.
Clearly, T -algebras for a monad and their maps form a category, which we

call CT .

Proposition 6. Given an S-parameterised monad 〈T, η, µ〉, the functors

FT : S × C → CT : (s, x) 7→ 〈T (−, s, x), µs1s2x〉 : (g, f) 7→ T (−, g, f)
GT : Sop × CT → C : (s, 〈x, h〉) 7→ x(s) : (g, f) 7→ x(g); fs1

form a parameterised adjunction, with unit η and counit εTs,〈x,h〉 = h−,s. This
adjunction is terminal in PAdj(T).

3 Algebraic Theories with Parameters

Signatures, Terms and Theories An S-parameterised signature is a collection of
operations σ ∈ Σ, where each operation has an associated arity ar(σ), which
is a countable set, a domain dom(σ) ∈ S and a co-domain cod(σ) ∈ S. As a
shorthand, we write an operation σ with ar(σ) = X, dom(σ) = s1 and cod(σ) =
s2 as σ : s2 ← sX1 .

Given a signature Σ and a countable set V of variables, we can define the
sets TΣ(s1, s2, V) of terms as the smallest sets closed under the following two
rules:

v ∈ V f ∈ S(s1, s2)
e(f, v) ∈ T (s1, s2, V)

σ : s2 ← sX1 ∈ Σ {tx ∈ T (s2, s′2, V)}x∈X f ∈ S(s′1, s1)
op(f, σ, {tx}) ∈ T (s′1, s

′
2, V)

By this definition, terms consist of trees of operations from the signature,
punctuated by morphisms from the parameterising category S and terminated
by e(f, v) terms. The morphisms from S are used to bridge differences between
the domains and codomains of each operation.

An S-parameterised algebraic theory is a pair (Σ, E) of a signature and a set
of equations t = t′ ∈ E between terms, where for each pair, both t and t′ are in
TΣ(s1, s2, V) for some s1 and s2.

Example 7. An example signature is given by the global state parameterised
monad from Example 2. Given a category of state types S, with a terminal
object 1, we take the underlying category to be Set and the assume that the
functor ·̂ : S → Set maps every object of S to a countable set. Our signature
has two families of operations: reads : s ← ss and writes(x ∈ ŝ) : 1 ← s1. The
required equations are:

op(id , reads, λx.e(id , v)) = v

op(id , reads, λx.op(!,writes(x), e(id , vx))) = op(id , reads, λx.vx)
op(id , reads, λx.op(id , reads, λy.e(id , vxy))) = op(id , λx.e(id , vxx))
op(id ,writes(y), op(id , reads(λx.e(!, vx)))) = vy

where we use ! for the unique terminal morphism in S. These equations state
that: (1) reading but not using the result is the same as not reading; (2) reading
and then writing back the same value is the same as just reading; (3) reading
twice in a row is the same as reading once; and (4) writing, reading and clearing
is the same as doing nothing.

Algebras For a signature Σ and category C with countable products, a Σ-C-
algebra consists of a functor a : Sop → C and for each operation σ : s2 ← sX1 ∈
Σ an arrow σa : a(s1)X → a(s2). Given two such algebras a homomorphism

f : (a, {σa}) → (b, {σb}) is a natural transformation f : a → b such that for all
σ : s2 ← sX1 ∈ Σ, the diagram

a(s1)X
fXs1 //

σa

��

b(s1)X

σb

��
a(s2)

fs2 // b(s2)

commutes.

Example 8. An algebra for the theory in Example 7 is given by a(s) = (ŝ′ ×
x)s for some set x and s′ ∈ S. It is easy to see how to give the appropriate
implementations of read and write. Elements of a(s) for some s′ and x represent
reading and writing computations that start with the global state of type s and
end with global state of type s′ and a result value in x.

Given a Σ-C-algebra a, terms t ∈ T (s1, s2, V) give rise to derived operations
[t] : a(s2)V → a(s1) by induction on the term t:

[e(f, v)] = πv; a(f)
[op(f, σ, {ti})] = 〈[tx]〉;σa; a(f)

where πv is the projection of the countable products of C, and 〈·〉 is pairing.
A (Σ, E)-C-algebra consists of a Σ-C-algebra that satisfies every equation in

E : for all t = t′ ∈ E(s1, s2) and valuations f : 1 → a(s2)V , then f ; [t] = f ; [t′].
The collection of (Σ, E)-C-algebras and homomorphisms forms a category (Σ, E)-
Alg(C).

Free Algebras A (Σ, E)-C-algebra 〈a, {σa}〉 is free for an S-object s and C-object
x if there is an arrow η : x→ a(s) such that for any other algebra 〈b, {σb}〉, there
is a unique homomorphism h : a→ b such that η;ha = f .

Proposition 9. Given a functor F : S × C → (Σ, E)-Alg(C) such that for all
s ∈ S and x ∈ C, F (s, x) is free for s and x, then T (s1, s2, x) = F (s2, x)(s1)
can be given the structure of an S-parameterised monad on C.

Free Algebras in Set We now construct the free (Σ, E)-algebra over a set A.
We do this in two stages by first constructing the free Σ-algebra and then by
quotienting by the equations in E . Fix Σ, E and A.

Lemma 10. The sets TΣ(s1, s2, A) can be made into a functor TΣ : Sop × S ×
Set→ Set.

Lemma 11. For all s, the functor TΣ(−, s, A) is the carrier of a Σ-algebra.

Proof. For each operation σ : s2 ← sX1 , define σT,s,A : TΣ(s1, s, A)X → TΣ(s2, s, A)
as σTΣ (〈tx〉) = op(id, σ, 〈tx〉).

Proposition 12. For each s, A, the algebra 〈TΣ(−, s, A), {σTΣ}〉 is the free
algebra for s and A.

Proof. (Sketch). Given f : A → B(s) for some Σ-algebra 〈B, {σB}〉, define
hs′ : T (s′, s, A)→ B(s′) by recursion on terms:

hs′(e(g, a)) = B(g)(f(a))
hs′(op(g, σ, 〈ti〉)) = B(g)(σB(〈hdom(σ)(ti)〉))

The rest of the proof is straightforward, with a little wrinkle in showing that
this homomorphism h is unique, which requires a Yoneda-style appeal to the
naturality of homomorphisms.

In preparation for quotienting the above free algebra by a set of equations,
we define congruences for parameterised algebras and show that quotienting by
a congruence gives a parameterised algebra. Given a Σ-algebra 〈a, {σa}〉 in Set,
a family of equivalence relations ≡s on a is a congruence if, for all σ : sX1 → s2,
∀x ∈ X.yx ≡s1 zx implies σA(〈yx〉) ≡s2 σA(〈zx〉) and for all g : s → s′, x ≡s′ y
implies a(g)x ≡s a(g)y.

Lemma 13. If 〈A, {σA}〉 is a Σ-algebra and ≡ is a congruence, then 〈A/≡, {σA}〉
is also a Σ-algebra.

Using our set of equations E , for each s ∈ S, define relations t ≡s′ t′ on
TΣ(s′, s, A) as the smallest congruences satisfying the rule:

(t, t′) ∈ E 〈tx, t′x ∈ TΣ(s2, s, A)〉 ∀x.tx ≡s2 t′x
[t]tx ≡s1 [t′]t′x

Set T(Σ,E)(−, s, A) = TΣ(−, s, A)/≡.

Proposition 14. TΣ,E(−, s, A) is the free (Σ, E)-algebra over s and A.

4 Beck’s Theorem

In this section we prove Beck’s theorem [2] characterising the Eilenberg-Moore
category of algebras for a parameterised monad. We base our proof on the proof
of Beck’s theorem for non-parameterised monads given by Mac Lane [7]. Recall
that Beck’s theorem for non-parameterised monads characterises the category
CT by the use of coequalisers that are preserved and created by the right adjoint.
Due to the additional parameterisation, we cannot use coequalisers for parame-
terised monads, so we use families of pairs of morphisms with common domain
that we call S-spans, and consider universal and absolute versions of these.

We will be dealing with functors that have pairs of contra- and co-variant
arguments such as x : Sop × S → A, where each pair is applied to the same
object. We abbreviate such applications like so: xs = x(s, s), and similarly for
multiple pairs of contra-/co-variant arguments.

An S-span in a category A is a pair of functors x : Sop × S × Sop × S → A
and y : Sop×S → A and a pair of dinatural transformations d0s1s2 : xs1s2 → ys1

and d1s1s2 : xs1s2 → ys2 . A fill-in for an S-span is an object z and dinatural
transformations es : ys → z such that, for all s1, s2, d0s1s2 ; es1 = d1s1s2 ; es2 . A
universal fill-in (e, z) for an S-span d0, d1, such that for any other fill-in (f, c)
there is a unique arrow h : z → c such that, for all s, es;h = fs. An absolute
fill-in is a fill-in such that for any functor T : A → A′, the resulting fill-in is
universal.

We are interested in S-spans because they arise from T -algebras. Given an
S-parameterised monad (T, η, µ) on C, for each T -algebra 〈x, h〉 we have a fill-in
square in CS

op

:

T (−, s1, T (s1, s2, x(s2)))
µ−s1s2x(s2) //

T (−,s1,hs1s2)

��

T (−, s2, x(s2))

h−s2
��

T (−, s1, x(s1))
h−s1 // x(−)

which is just the associativity law for the T -algebra.

Lemma 15. This fill-in square is universal and absolute.

The next lemma will also be useful.

Lemma 16. Universal fill-ins have the following cancellation property. For two
arrows f, g : z → c, if, for all s, es; f = es; g, then f = g.

Theorem 17 (Beck). Let 〈F,G, η, ε〉 : C ⇀ A be an S-parameterised adjunc-
tion and 〈T, η, µ〉 the derived S-parameterised monad. Then A is isomorphic to
CT iff for each S-span d0, d1 in A such that the S-span G(−, d0), G(−, d1) has
an absolute fill-in (e−−, z(−)), there is a unique universal fill-in (e−, z) of d0, d1

such that G(s, z) = z(s) and G(s, es
′
) = es

′

s .

Proof. First, we show the forward direction. We know that A and CT are iso-
morphic, so it suffices to show that given S-spans

〈xs1s2 , hs1s2〉d
0s1s2 //

d1s1s2

��

〈ys1 , ks1〉

〈ys2 , ks2〉

of T -algebras for which the corresponding S-spans in CS
op

via GT have absolute
universal fill-ins (es−, z(−))

xs1s2(−) d
0s1s2 //

d1s1s2

��

ys1(−)

e
s1
−

��
ys2(−)

e
s2
− // z(−)

then there is a unique universal fill-in (e, 〈z,m〉) in CT such that GT (s, es
′
) = es

′

s

and GT (s, 〈z,m〉) = z(s).
We already know that z(−) is a functor Sop → C and that the es are natural,

so we use z as the functor part of our T -algebra. We must find a T -algebra
structure ms1,s2 : T (s1, s2, z(s2)) → z(s1). This is induced from the universal
fill-in:

xss
′
(s1)

d0ss
′

s1 //

d1ss
′

s1

��

ys(s1)

ess1

��

T (s1, s2, xss
′
(s2))
T (s1,s2,d

0ss′
s2

)
//

T (s1,s2,d
1ss′
s2

)

��

hss
′

s1s2

ggOOOOOOOOOOO

T (s1, s2, ys(s2))

T (s1,s2,e
s
s2

)

��

kss1s2

88ppppppppppp

T (s1, s2, ys
′
(s2))

T (s1,s2,e
s′
s2

)
//

ks
′
s1s2wwooooooooooo

T (s1, s2, z(s2))
ms1s2

&&
ys
′
(s1)

es
′
s1 // z(s1)

The inner and outer squares are the fill-in properties for T (s1, s2, e−s2) and e−s1
respectively. The top and left regions commute because d0 and d1 are homomor-
phisms of T -algebras. Thus, k−s1s2 ; e−s1 is a fill-in for the inner square. Since es is an
absolute universal fill-in there is a unique arrow ms1s2 : T (s1, s2, z(s2))→ z(s1)
such that T (s1, s2, ess2);ms1s2 = kss1s2 ; ess1 . To complete this direction of the proof
we must show that the family ms1s2 is natural in s1 and dinatural in s2, that it
is the structure map for a T -algebra, and that es is a universal fill-in of d0, d1.
These are easily checked by construction of the appropriate diagrams, and use
of Lemma 16.

In the reverse direction, we use the fact that for each object a ∈ A, the
adjunction 〈F,G, η, ε〉 : C ⇀ A provides a fill-in

F (s1, G(s1, F (s2, G(s2, a))))
F (s1,G(s1,εs2,a))//

εs1,F (s2,G(s2,a))

��

F (s1, G(s1, a))

εs1,a

��
F (s2, G(s2, a))

εs2,a // a

in A. This is the “canonical presentation” of a. This definition, and Lemma 15,
are used to prove that there is a unique morphism in PAdj(T) from any other
A′ to A in a manner similar to Mac Lane’s proof. This then implies the result
we desire.

Corollary 18. For any S-theory (Σ, E), (Σ, E)-Alg is parameterised-monadic
over Set.

5 Structured Parameterisation

In this section we develop a small amount of theory to deal with the case when
we have structure on the parameterising category S, expressed using functors,
that we wish to have on the parameterised monad itself.

Motivation Consider the use of parameterised monads to model effectful compu-
tation, where the kinds of effects we may perform are regulated by the parameters
of the monad. In the type system of the next section, we have typing judgements
of the form Γ ; a ` M : A; b, where a and b represent objects of our parameter-
ising category, dictating the start and end states of the computation. This is
interpreted as a morphism JΓ K → T (a, b, JAK) for some parameterised monad.
The system has a “let” construct for sequencing two programs. Given two typed
programs Γ ; a `M : A; b and Γ, x : A; b ` N : B; c then an obvious way to type
the sequencing of these programs is Γ ; a ` let x ⇐ M in N : B; c, matching
the bs, and to use the multiplication of the monad for the semantics. However, it
is likely that the program N requires some knowledge of its start state beyond
that given to it by M . If c denotes the extra knowledge required by N , we write
the combination as b • c and the full sequencing rule is given by

Γ ; a `M : A; b Γ, x : A; b • c ` N : B; d
Γ ; a • c ` let x⇐M in N : B; d.

The operation − • c can be interpreted as a functor on the parameterising cat-
egory. To give a semantics to the “let” construct, we require some morphism
(− • s)† : T (s1, s2, x) → T (s1 • s, s2 • s, x). We call this a lifting of the functor
− • s.

Definition Given an strong S-parameterised monad (T, η, µ, τ), and a functor
F : S → S, a lifting of F to T is a natural transformation F †s1s2x : T (s1, s2, x)→
T (Fs1, Fs2, x) that commutes with the unit, multiplication and strength of the
monad:

F †;T (Fs1, Fs2, F †);µ = µ;F † η;F † = ηF τ ;F † = x× F †; τ

This definition is from [1].

Example 19. For the state category, we take the free symmetric monoidal cat-
egory on the category S of state types used in Example 2, which we label S′.
We extend the functor ·̂ to be S′ → C by mapping objects s1 ⊗ s2 to ŝ1 × ŝ2,
hence ·̂ becomes a strict symmetric monoidal functor. A lifting of s⊗− can be
defined as: (s⊗−)† = c 7→ λ(s, s1).let (s2, a) = c(s1) in ((s, s2), a) and similarly
for (−⊗ s)†.

Liftings for Algebraic Theories For the S-parameterised monads generated from
algebraic theories as in Section 3, we can define liftings for endo-functors F on
S, provided there is enough structure on the operations of the algebras. Given

an S-theory (Σ, E), if, for every operation σ : s1 ← sX2 ∈ Σ there is an operation
Fσ : Fs1 ← (Fs2)X , and all the equations generated by E are preserved by
lifting all operations, then we can define the following operations on the sets
TΣ(s1, s2, x):

F †(e(g, x)) = e(Fg, x) F †(op(g, σ, {tx})) = op(Fg, Fσ, {F †(tx)})

Proposition 20. This definition defines a lifting of F to T(Σ,E).

6 Semantics for Type and Effect Systems

We now give an application of the theory developed above by using it to give a
semantics to a toy language with explicitly typed effectful operations.

Effect Systems For our language we use a partially-ordered set A of permissions
that has an order-preserving binary associative operation • : A × A → A. Ele-
ments of A are used to represent permissions that permit a program to carry out
certain effects. We write the ordering of A as a⇒ b, intended to be reminiscent
of logical implication. We use a, b, c, ... to range over elements of A.

The types of our toy language are given by:

A,B ::= int | bool | unit | A×B | (A; a)→ (B; b)

The types are standard except for the function type (A; a) → (B; b). This is
the type of functions that take As and return Bs, but may also perform effects
allowed by permissions a and bestow permissions b. We refer to types that do
not contain function types as ground.

An effect system consists of a permission algebra A and a set Ω of operations
op : (A; a)→ (B; b), where A and B are ground.

Example 21. The traditional effect system recording when a program reads or
writes global variables can be expressed in our system. Given a set of locations
Loc, we take A to be the power set of {rl,wl | l ∈ Loc}, ordered by reverse
inclusion. The binary operation is defined as ε•ε′ = ε∪ε′. We read {rl1 , rl2 ,wl2}
as the permission to read the locations l1 and l2, the permission to write to
location l2. We have two families of operations:

readl : (unit, {rl})→ (int, {rl})
writel : (int, {wl})→ (unit, {wl})

The read operation requires that we have the permission to perform a read on
the required location and it bestows the permission to still read that location
afterwards; likewise for writing.

Example 22. This example enforces an ordering on effects performed, in a similar
manner to history effects [11]. The permission algebra is given by:

H ::= α | H1 +H2 | H1.H2 | ε

Γ, x : A ` x : A Γ ` n : int Γ ` b : bool Γ ` () : unit

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 < V2 : bool

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 + V2 : int

Γ ` V1 : A Γ ` V2 : B

Γ ` (V1, V2) : A×B
Γ ` V : A1 ×A2

Γ ` πiV : Ai

Γ, x : A; a `M : B; b

Γ ` λ(x : A; a).M : (A; a)→ (B; b)

Γ ` V : A A v B
Γ ` V : B

Γ ` V : A

Γ ; a ` vala V : A; a

Γ ; a `M : A; b Γ, x : A; b • c ` N : B; d

Γ ; a • c ` let x⇐M in N : B; d

Γ ` V1 : (A; a)→ (B; b) Γ ` V2 : A

Γ ; a ` V1 V2 : B; b

Γ ` V : bool Γ ; a `M : A; b Γ ; a ` N : A; b

Γ ; a ` if V then M else N : A; b

Γ ` V : A op : (A; a)→ (B; b)

Γ ; a ` op V : B; b

a⇒ a′ Γ ; a′ `M : A; b′ b′ ⇒ b

Γ ; a `M : A; b

Γ ; a `M : A; b A v B
Γ ; a `M : B; b

Fig. 1. Typing Rules

over some set of basic permissions α. The ordering treats H1.H2 as an associative
binary operator with unit ε, and H1 + H2 as a meet. Define H1 •H2 as H1.H2

Operations can now be defined that require some basic permission α ∈ {in, out}
to complete:

input : (unit, in)→ (int, ε) output : (int, out)→ (unit, ε)

The lack of commutativity in H1.H2 ensures that operations must be carried out
in the predefined order prescribed by the starting set of permissions. The lifting
operation ensures that a sub-program need not have complete knowledge of the
rest of the program’s effects.

Typing Rules The typing rules for our language are presented in Figure 1. We
split the language into effect-free values V and possibly side-effecting programs
M , based on the fine-grain call-by-value calculus of Levy et al [6].

V ::= x | n | b | () | V1 < V2 | V1 + V2 | (V1, V2) | πiV | λ(x : A; a).M

M ::= vala V | let x⇐M in N | V1 V2 | if V then M else N | op V

Values are typed using a judgement of the form Γ ` V : A, where Γ is a
list of variable : type pairs with no duplicated variable names and A is a type.
The value typing rules are standard for the given constructs apart from the λ-
abstraction rule. This rule’s premise is a typing judgement on a program M . Such
judgements have the form Γ ; a ` M : A; b, where a and b are effect assertions.
This judgement states that the program M , when its free variables are typed as
in Γ , has effects afforded by a and returns a value of type A, allowing further
effects afforded by b.

The language has the usual value and sequencing constructs for a monadic
language, extended with permissions. Values are incorporated into programs
by the vala V construct. This is the return of normal monadic programming
extended with the fact that the program starts in a state described by a and does
nothing to that state. Two programs are sequenced using the let x⇐M in N
construct we introduced in the previous section. There are two subtyping rules
for values and computations. The subtyping relation is defined as:

int v int bool v bool

A v A′ B v B′

A×A′ v B ×B′

A′ v A a′ ⇒ a B v B′ b⇒ b′

(A; a)→ (B; b) v (A′; a′)→ (B′; b′)

Semantics Using a Parameterised Monad For an effect system (A, Ω), the se-
mantics of the language is defined using an A-parameterised monad (T, η, µ) on
Set with a lifting for •. This gives the following interpretation of the types:

JintK = Z JboolK = B JunitK = {?} JA×BK = JAK× JBK

J(A; a)→ (B; b)K = JAK→ T (a, b, JBK).

The interpretation of types extends to typing contexts in the standard way. We
interpret value judgements Γ ` V : A as functions JΓ K→ JAK, and computation
judgements Γ ; a ` M : B; b as functions JΓ K→ T (a, b, JBK). For each operation
op : (A; a)→ (B; b) in Ω we require a function JopK : JAK→ T (a, b, JBK).

The interpretation of terms is now relatively straightforward. Due to the
consequence and subtyping rules, we must give the interpretation over typing
derivations and not the structure of the terms. To resolve this coherence issue
we relate this semantics to a semantics in which these rules are no-ops below.

To define the semantics we use the bind operator of type T (a, b, x) × (x →
T (b, c, y)) → T (a, c, y), derived from the multiplication of the monad. We give
the cases for the parameterised monad structure (where the first three are un-
derstood to actually apply to the typing rule with the given term constructor):

Jvala V Kρ = ηa(JV Kρ)
Jlet x⇐M in NKρ = bind (a•r)(b•r)d(JMKρ) •† r, λx.JNK(ρ, x)

Jop V Kρ = JopK(JV Kρ)
s
a⇒ a′ Γ ; a′ `M : A; b′ b′ ⇒ b

Γ ; a `M : A; b

{
ρ = T (a⇒ a′, b′ ⇒ b, JMKρ)

In the interpretation of let, note the use of the lifting operator (•†r) to lift the
interpretation of M so that it can be sequenced with N .

The subtyping relation A v B is interpreted as an function JAK → JBK
over the derivation, using the functor action of T on A. Subtyping rules are
interpreted by composition with this interpretation.

Generating Parameterised Monads for Effect Systems We now construct an A-
parameterised monad suitable for the previous section by using the free algebras
in Sections 3 and 5. Given an effect system (A, Ω) we define the corresponding A-
signature ΣΩ as the union of sets of operations deriving from each op : (A; a)→
(B; b) ∈ Ω:

{opx : a← bX | x ∈ JAK} ∪ {opx • c : (a • c)← (b • c)JBK | x ∈ JAK, c ∈ A}

So for each operation op we have a family of operations for each possible input
value in the interpretation of A and each possible permission context in which the
operation may be used. The duplication of operations over permission contexts
will be used to define the lifting operations. The restriction to ground types in
operations means that we are not using the definition of the monad that we are
currently constructing. By Propositions 9 and 14 we obtain an A-parameterised
monad suitable for interpreting our toy language.

Relating Parameterised and Unparameterised Semantics Finally in this section,
we relate our semantics with typed algebraic operations to a standard semantics
for a given effect system. The basic idea is to assume that, for an effect system
(A, Ω) and some set of equations E , there is a non-parameterised monad M
that gives an adequate semantics for the chosen operational semantics of this
language. If the free algebra for this monad supports the theory (ΣΩ , E) that
we have used to prove any equivalences, then we can define an erasure function
erase : T (a, b, A) → MA that replays each effect in the typed interpretation in
the untyped one. By a logical relations argument using Katsumata’s notion of
>>-lifting [5], it is possible to show that, for closed programs M of ground type,
this means that erase(JMKt) = JMKu, where J−Kt and J−Ku are the semantics in
T and M respectively.

Proposition 23. If the untyped semantics in M is adequate, meaning that if
JMKu = JNKu then M and N are contextually equivalent, then JMKt = JNKt
implies that M and N are equivalent for all type derivation contexts −; a `
C[−] : bool; b.

Using this proposition it is possible to prove the equivalences given by Benton
et al [3], using Plotkin and Power’s equations for global state [9] and induction
on the terms of the free algebra.

7 Conclusions

We have extended the relationship between parameterised monads and adjunc-
tions to include the Eilenberg-Moore category of algebras. We have also given a
description of algebraic theories with parameters, and used a generalisation of
Beck’s theorem to show that the Eilenberg-Moore category and the category of
algebras for a given theory coincide. We then used this theory to give a semantics
for a toy programming language with effect information recorded in the types.

In future work we wish to develop the theory of algebraic theories with pa-
rameters and parameterised monads further:

– We wish to understand more about how structure on the parameterising
category S may be carried over to the parameterised monad itself. For every
functor F : S → S, with a lifting F † it is possible to define functors FT :
CT → CT and FT : CT → CT . However, an attempt to define a category of
adjunctions with such functors fails because the operation F † factors across
the adjunctions in two different ways for CT and CT .

– We wish to construct free algebras with parameters in other categories, es-
pecially in some category of domains suitable for interpreting recursion.

– We have not characterised the parameterised monads that arise from alge-
braic theories. We expect that this will simply be parameterised monads that
preserve the right kind of filtered colimits, as for normal monads [10].

References

1. Robert Atkey. Parameterised notions of computation. Journal of Functional Pro-
gramming, 19, 2009.

2. Jonathan Mock Beck. Triples, algebras and cohomology. Reprints in Theory and
Applications of Categories, 2:1–59, 2003.

3. N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, writing and
relations. In APLAS, volume 4279 of LNCS, pages 114–130. Springer, 2006.

4. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-
ming. In ACM Conference on LISP and Functional Programming, 1986.

5. Shin-ya Katsumata. A Semantic Formulation of >>-Lifting and Logical Predicates
for Computational Metalanguage. In C.-H. Luke Ong, editor, CSL, volume 3634
of LNCS, pages 87–102. Springer, 2005.

6. Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in
call-by-value programming languages. Inf. and Comp., 185:182–210, 2003.

7. Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in
Graduate Texts in Mathematics. Springer-Verlag, 2nd edition, 1998.

8. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93(1):55–92, 1991.

9. Gordon D. Plotkin and John Power. Notions of computation determine monads.
In FOSSACS 2002, number 2303 in LNCS, April 2002.

10. Edmund Robinson. Variations on algebra: Monadicity and generalisations of equa-
tional theories. Formal Asp. Comput., 13(3–5):308–326, 2002.

11. Christian Skalka and Scott Smith. History Effects and Verification. In W.-N. Chin,
editor, APLAS, volume 3302 of LNCS, pages 107–128. Springer, 2004.

