13 research outputs found

    Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil

    Full text link
    [EN] This paper reports the development of biodegradable active packaging films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the incorporation of alpha- and gamma-cyclodextrins (alpha-CD and gamma-CDs) containing oregano essential oil (OEO). Herein, both the kneading method (KM) and freeze-drying method (FDM) were first explored for the preparation of alpha-CD:OEO and gamma-CD:OEO inclusion complexes at host:guest ratios of 80:20 wt/wt and 85:15 wt/wt, respectively. The results showed that KM was the most efficient method for the encapsulation of OEO in the CDs cavity in terms of simplicity and rapidity, while it was also yielded the inclusion complexes with the highest antimicrobial and antioxidant performance. The alpha-CD:OEO and gamma-CD:OEO inclusion complexes obtained by KM were thereafter incorporated at 10, 15, 20, 25, and 30 wt% into PHBV fibres by electrospinning and annealed at 160 degrees C to produce contact transparent films. It was observed that the optimal concentration of alpha-CD:OEO and gamma-CD:OEO inclusion complexes for homogeneous and continuous film formation was attained at contents of 15 and 25 wt%, respectively. Higher antimicrobial and antioxidant activities were obtained for the gamma-CD:OEO inclusion complexes due to the greater encapsulation efficiency of OEO in gamma-CD, resulting in PHBV films with good performance for up to 15 days. This aspect, together with their improved thermal stability and mechanical strength, give interesting applications to these biopolymer films in the design of active-releasing packaging materials to maintain the physical, chemical, and microbiological characteristics of food products.The authors would like to thank the Unidad Asociada IATA-UJI "Plastics Technology" and the Spanish Ministry of Science and Innovation (MICI) project RTI 2018-097249-B-C21 and the H2020 EU project YPACK (reference number 773872) for funding. Kelly J. Figueroa-Lopez and S. Torres-Giner are recipients of a Grisolia scholarship (Ref. 0001426013N810001A201) of the Valencian Government (GVA) and a Juan de la Cierva-Incorporaci.on contract (IJCI-2016-29675) from MICI, respectively.Figueroa-Lopez, K.; Enescu, D.; Torres-Giner, S.; Cabedo, L.; Cerqueira, M.; Pastrana, L.; Fuciños, P.... (2020). Development of electrospun active films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by the incorporation of cyclodextrin inclusion complexes containing oregano essential oil. Food Hydrocolloids. 108:1-18. https://doi.org/10.1016/j.foodhyd.2020.106013S118108Ashori, A., Jonoobi, M., Ayrilmis, N., Shahreki, A., & Fashapoyeh, M. A. (2019). Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. International Journal of Biological Macromolecules, 136, 1119-1124. doi:10.1016/j.ijbiomac.2019.06.181Aytac, Z., Ipek, S., Durgun, E., Tekinay, T., & Uyar, T. (2017). Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chemistry, 233, 117-124. doi:10.1016/j.foodchem.2017.04.095Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106Beirão-da-Costa, S., Duarte, C., Bourbon, A. I., Pinheiro, A. C., Januário, M. I. N., Vicente, A. A., … Delgadillo, I. (2013). Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocolloids, 33(2), 199-206. doi:10.1016/j.foodhyd.2013.03.009Bilia, A. R., Guccione, C., Isacchi, B., Righeschi, C., Firenzuoli, F., & Bergonzi, M. C. (2014). Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach. Evidence-Based Complementary and Alternative Medicine, 2014, 1-14. doi:10.1155/2014/651593Busolo, M. A., & Lagaron, J. M. (2015). Antioxidant polyethylene films based on a resveratrol containing Clay of Interest in Food Packaging Applications. Food Packaging and Shelf Life, 6, 30-41. doi:10.1016/j.fpsl.2015.08.004Campos, E. V. R., Proença, P. L. F., Oliveira, J. L., Melville, C. C., Della Vechia, J. F., de Andrade, D. J., & Fraceto, L. F. (2018). Chitosan nanoparticles functionalized with β-cyclodextrin: a promising carrier for botanical pesticides. Scientific Reports, 8(1). doi:10.1038/s41598-018-20602-yCeccato, M., Lo Nostro, P., Rossi, C., Bonechi, C., Donati, A., & Baglioni, P. (1997). Molecular Dynamics of Novel α-Cyclodextrin Adducts Studied by 13C-NMR Relaxation. The Journal of Physical Chemistry B, 101(26), 5094-5099. doi:10.1021/jp9638447Celebioglu, A., Umu, O. C. O., Tekinay, T., & Uyar, T. (2014). Antibacterial electrospun nanofibers from triclosan/cyclodextrin inclusion complexes. Colloids and Surfaces B: Biointerfaces, 116, 612-619. doi:10.1016/j.colsurfb.2013.10.029Crini, G. (2014). Review: A History of Cyclodextrins. Chemical Reviews, 114(21), 10940-10975. doi:10.1021/cr500081pDas, S., & Subuddhi, U. (2015). Studies on the complexation of diclofenac sodium with β–cyclodextrin: Influence of method of preparation. Journal of Molecular Structure, 1099, 482-489. doi:10.1016/j.molstruc.2015.07.001De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002Del Valle, E. M. M. (2004). Cyclodextrins and their uses: a review. Process Biochemistry, 39(9), 1033-1046. doi:10.1016/s0032-9592(03)00258-9Dietrich, K., Dumont, M.-J., Del Rio, L. F., & Orsat, V. (2019). Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnology, 49, 161-168. doi:10.1016/j.nbt.2018.11.004Figueroa-Lopez, K., Andrade-Mahecha, M., & Torres-Vargas, O. (2018). Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules, 23(1), 212. doi:10.3390/molecules23010212Figueroa-Lopez, K., Castro-Mayorga, J., Andrade-Mahecha, M., Cabedo, L., & Lagaron, J. (2018). Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications. Nanomaterials, 8(4), 199. doi:10.3390/nano8040199Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Gao, N., Yang, J., Wu, Y., Yue, J., Cao, G., Zhang, A., … Feng, Z. (2019). β-Cyclodextrin functionalized coaxially electrospun poly(vinylidene fluoride) @ polystyrene membranes with higher mechanical performance for efficient removal of phenolphthalein. Reactive and Functional Polymers, 141, 100-111. doi:10.1016/j.reactfunctpolym.2019.05.001Gaur, S., Lopez, E. C., Ojha, A., & Andrade, J. E. (2018). Functionalization of Lipid‐Based Nutrient Supplement with β‐Cyclodextrin Inclusions of Oregano Essential Oil. Journal of Food Science, 83(6), 1748-1756. doi:10.1111/1750-3841.14178Giordano, F., Novak, C., & Moyano, J. R. (2001). Thermal analysis of cyclodextrins and their inclusion compounds. Thermochimica Acta, 380(2), 123-151. doi:10.1016/s0040-6031(01)00665-7Guimarães, A. G., Oliveira, M. A., Alves, R. dos S., Menezes, P. dos P., Serafini, M. R., de Souza Araújo, A. A., … Quintans Júnior, L. J. (2015). Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chemico-Biological Interactions, 227, 69-76. doi:10.1016/j.cbi.2014.12.020Haloci, E., Toska, V., Shkreli, R., Goci, E., Vertuani, S., & Manfredini, S. (2014). Encapsulation of Satureja montana essential oil in β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1-2), 147-153. doi:10.1007/s10847-014-0437-zHarada, A., & Kamachi, M. (1990). Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules, 23(10), 2821-2823. doi:10.1021/ma00212a039Harada, A., Li, J., & Kamachi, M. (1992). The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature, 356(6367), 325-327. doi:10.1038/356325a0Harada, A., Li, J., & Kamachi, M. (1993). Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 364(6437), 516-518. doi:10.1038/364516a0Harada, A., Suzuki, S., Okada, M., & Kamachi, M. (1996). Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 29(17), 5611-5614. doi:10.1021/ma960428bHedges, A. R. (1998). Industrial Applications of Cyclodextrins. Chemical Reviews, 98(5), 2035-2044. doi:10.1021/cr970014wHill, L. E., Gomes, C., & Taylor, T. M. (2013). Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology, 51(1), 86-93. doi:10.1016/j.lwt.2012.11.011Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. doi:10.1016/j.carbpol.2013.02.031Jouki, M., Yazdi, F. T., Mortazavi, S. A., & Koocheki, A. (2014). Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocolloids, 36, 9-19. doi:10.1016/j.foodhyd.2013.08.030Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., Cheng, Y., … Yao, W. (2019). Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92, 22-32. doi:10.1016/j.tifs.2019.08.005Kaolaor, A., Phunpee, S., Ruktanonchai, U. R., & Suwantong, O. (2019). Effects of β-cyclodextrin complexation of curcumin and quaternization of chitosan on the properties of the blend films for use as wound dressings. Journal of Polymer Research, 26(2). doi:10.1007/s10965-019-1703-yKayaci, F., & Uyar, T. (2012). Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 133(3), 641-649. doi:10.1016/j.foodchem.2012.01.040Liang, H., Yuan, Q., Vriesekoop, F., & Lv, F. (2012). Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chemistry, 135(3), 1020-1027. doi:10.1016/j.foodchem.2012.05.054Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151-1170. doi:10.1002/adma.200400719Loftsson, T., & Brewster, M. E. (1996). Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. Journal of Pharmaceutical Sciences, 85(10), 1017-1025. doi:10.1021/js950534bLu, Z., Cheng, B., Hu, Y., Zhang, Y., & Zou, G. (2009). Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chemistry, 113(1), 17-20. doi:10.1016/j.foodchem.2008.04.042Marques, H. M. C. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour and Fragrance Journal, 25(5), 313-326. doi:10.1002/ffj.2019Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Bernardos, A., Martínez-Máñez, R., Cabedo, L., Torres-Giner, S., & Lagaron, J. M. (2019). Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials, 9(2), 227. doi:10.3390/nano9020227NAKANISHI, K., MASUKAWA, T., NADAI, T., YOSHII, K., OKADA, S., & MIYAJIMA, K. (1997). Sustained Release of Flufenamic Acid from a Drug-Triacetyl-.BETA.-Cyclodextrin Complex. Biological and Pharmaceutical Bulletin, 20(1), 66-70. doi:10.1248/bpb.20.66Owen, L., & Laird, K. (2018). Synchronous application of antibiotics and essential oils: dual mechanisms of action as a potential solution to antibiotic resistance. Critical Reviews in Microbiology, 44(4), 414-435. doi:10.1080/1040841x.2018.1423616Ozdemir, N., Pola, C. C., Teixeira, B. N., Hill, L. E., Bayrak, A., & Gomes, C. L. (2018). Preparation of black pepper oleoresin inclusion complexes based on beta-cyclodextrin for antioxidant and antimicrobial delivery applications using kneading and freeze drying methods: A comparative study. LWT, 91, 439-445. doi:10.1016/j.lwt.2018.01.046Ponce Cevallos, P. A., Buera, M. P., & Elizalde, B. E. (2010). Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. Journal of Food Engineering, 99(1), 70-75. doi:10.1016/j.jfoodeng.2010.01.039Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities – Potentials and challenges. Food Control, 47, 381-391. doi:10.1016/j.foodcont.2014.07.023Prakash, B., Singh, P., Kedia, A., & Dubey, N. K. (2012). Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Research International, 49(1), 201-208. doi:10.1016/j.foodres.2012.08.020Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Rakmai, J., Cheirsilp, B., Mejuto, J. C., Torrado-Agrasar, A., & Simal-Gándara, J. (2017). Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocolloids, 65, 157-164. doi:10.1016/j.foodhyd.2016.11.014Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250-264. doi:10.1016/j.indcrop.2014.05.055Ribeiro-Santos, R., Andrade, M., Melo, N. R. de, & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science & Technology, 61, 132-140. doi:10.1016/j.tifs.2016.11.021Rusa, C. C., Bullions, T. A., Fox, J., Porbeni, F. E., Wang, X., & Tonelli, A. E. (2002). Inclusion Compound Formation with a New Columnar Cyclodextrin Host. Langmuir, 18(25), 10016-10023. doi:10.1021/la0262452Sagiri, S. S., Anis, A., & Pal, K. (2015). Review on Encapsulation of Vegetable Oils: Strategies, Preparation Methods, and Applications. Polymer-Plastics Technology and Engineering, 55(3), 291-311. doi:10.1080/03602559.2015.1050521Santos, E. H., Kamimura, J. A., Hill, L. E., & Gomes, C. L. (2015). Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT - Food Science and Technology, 60(1), 583-592. doi:10.1016/j.lwt.2014.08.046Saokham, P., Muankaew, C., Jansook, P., & Loftsson, T. (2018). Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules, 23(5), 1161. doi:10.3390/molecules23051161Seo, E.-J., Min, S.-G., & Choi, M.-J. (2010). Release characteristics of freeze-dried eugenol encapsulated withβ-cyclodextrin by molecular inclusion method. Journal of Microencapsulation, 27(6), 496-505. doi:10.3109/02652041003681398Shan, L., Tao, E., Meng, Q., Hou, W., Liu, K., Shang, H., … Zhang, W. (2016). Formulation, optimization, and pharmacodynamic evaluation of chitosan/phospholipid/β-cyclodextrin microspheres. Drug Design, Development and Therapy, 417. doi:10.2147/dddt.s97982Sharifi-Rad, J., Sureda, A., Tenore, G., Daglia, M., Sharifi-Rad, M., Valussi, M., … Iriti, M. (2017). Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules, 22(1), 70. doi:10.3390/molecules22010070Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: a review. Journal of Liposome Research, 23(4), 268-275. doi:10.3109/08982104.2013.819888Shin, J., Kathuria, A., & Lee, Y. S. (2019). Effect of hydrophilic and hydrophobic cyclodextrins on the release of encapsulated allyl isothiocyanate (AITC) and their potential application for plastic film extrusion. Journal of Applied Polymer Science, 136(42), 48137. doi:10.1002/app.48137Szejtli, J. (1998). Introduction and General Overview of Cyclodextrin Chemistry. Chemical Reviews, 98(5), 1743-1754. doi:10.1021/cr970022cTopuz, F., & Uyar, T. (2019). Electrospinning of nanocomposite nanofibers from cyclodextrin and laponite. Composites Communications, 12, 33-38. doi:10.1016/j.coco.2018.12.002Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Wang, C. X., & Chen, S. L. (2005). Fragrance-release Property of β-Cyclodextrin Inclusion Compounds and their Application in Aromatherapy. Journal of Industrial Textiles, 34(3), 157-166. doi:10.1177/1528083705049050Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E., & Uyar, T. (2018). Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol. Journal of Food Engineering, 224, 27-36. doi:10.1016/j.jfoodeng.2017.12.020Zainuddin, S., Kamrul Hasan, S. M., Loeven, D., & Hosur, M. (2019). Mechanical, Fire Retardant, Water Absorption and Soil Biodegradation Properties of Poly(3-hydroxy-butyrate-co-3-valerate) Nanofilms. Journal of Polymers and the Environment, 27(10), 2292-2304. doi:10.1007/s10924-019-01517-9Zhang, J., Shishatskaya, E. I., Volova, T. G., da Silva, L. F., & Chen, G.-Q. (2018). Polyhydroxyalkanoates (PHA) for therapeutic applications. Materials Science and Engineering: C, 86, 144-150. doi:10.1016/j.msec.2017.12.035Zhang, M., Wang, J., Lyu, Y., Fitriyanti, M., Hou, H., Jin, Z., … Narsimhan, G. (2018). Understanding the antimicrobial activity of water soluble γ-cyclodextrin/alamethicin complex. Colloids and Surfaces B: Biointerfaces, 172, 451-458. doi:10.1016/j.colsurfb.2018.08.06

    The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers

    No full text
    Polyimide (PI) fibers display excellent thermal and mechanical performance; they have been recently investigated to fabricate hydrophobic membranes (mats) for high-performance applications. We studied the effect of electrospinning processing parameters and solvent selection on the morphology and the diameter of PI fibers. 11 different solvents and 22 solvent systems able to dissolve PI were located in a Teas graph with the aim of building the solubility-electrospinnability map for this material. PI solutions prepared with various solvents were electrospun at different electrospinning process parameters according to a 34–1 fractional factorial design of experiments. Polymer concentration and applied voltage were the most significant factors to create thin and uniform fibers. More homogeneous fibers and reproducible electrospinning process were obtained by using polymer concentrations above 15 wt%. However, all solutions showed different morphological evolution according to the solvents used. Based on the solubility–spinnability region settled for this PI, non-woven mats were obtained with rough surface fiber morphology and high water contact angle, suitable for applications such as hydrophobic membranes for oil-water separation. © 2017 Elsevier Lt

    Heat transfer modelling of encapsulated phase change materials for food packaging

    No full text
    3rd IIR International Conference on Sustainability and the Cold Chain, ICCC 2014, London, , 23-/06/2014 - 25/06/2014International audienceTemperature abuses in cold chain can lead to deterioration in food quality and safety. Packaging can play an active role in temperature controlling of perishable products. However, standard materials for product packaging (plastic, cardboard or wood) usually have limited thermal buffering capacity. One possible approach to enhance this capacity and maintain the product at a desired temperature is thermal energy storage by phase change materials-PCM. In the present work, the heat transfer behaviour of a plate made from encapsulated PCM (Rubitherm RT5 encapsulated in polycaprolactone PCL) was studied. The enthalpy method was chosen to model the phase transition of the PCM. The model was validated by experimental cooling and heating processes, under controlled air temperature conditions. The numerical result demonstrated a better thermal capacitance of the encapsulated PCM material compared to a standard one (cardboard)

    Superhydrophobic bilayer coating based on annealed electrospun ultrathin poly("-caprolactone) fibers and electrosprayed nanostructured silica microparticles for easy emptying packaging applications

    No full text
    A coating rendering superhydrophobic properties to low-density polyethylene (LDPE) films used in packaging applications was herein generated by means of the electrohydrodynamic processing (EHDP) technique. To this end, electrospun ultrathin poly("-caprolactone) (PCL) fibers, followed by electrosprayed nanostructured silica (SiO2) microparticles, were deposited on top of the LDPE film. Various electrospinning and electrospraying times were tested and optimized followed by a thermal post-treatment to provide physical adhesion between the bilayer coating and the LDPE substrate. The morphology, hydrophobicity, permeance to limonene, and thermal stability of the resultant nanostructured coatings were characterized. It was observed that by controlling both the deposition time of the electrospun ultrathin PCL fibers and the electrosprayed SiO2 microparticles, as well as the conditions of the thermal post-treatment, effective superhydrophobic coatings were developed onto the LDPE films. The resultant multilayer presented a hierarchical micro/nanostructured surface with an apparent contact angle of 157° and a sliding angle of 8°. The addition of silica reduced, to some extent, the limonene (aroma) barrier, likely due to the increased surface-to-volume ratio, which allowed permeant sorption to occur but improved the thermal stability of the LDPE/PCL film. As a result, the developed multilayer system of LDPE/PCL/SiO2 has significant potential for use in easy-to-empty packaging applications of high water activity products. © 2018 by the authors

    Etude de transfert thermique d'une plaque de submicro MCP encapsulé pour l'application de l'emballage alimentaire

    No full text
    International audienceIn recent studies, encapsulated phase change materials (PCM) were developed as novel materials for food packaging because of their improved thermal insulation capacity. The PCMs (often liquid in room temperature) are encapsulated in a shell material so as they can be practically handled. In this work, the thermal behaviour of an encapsulated PCM material (Rubitherm RT5 encapsulated in polycaprolactone PCL) with two different PCM mass fractions was studied. The model was validated by experimental cooling and heating processes, under controlled air temperature conditions. The numerical result demonstrated a better thermal buffering capacity of the encapsulated PCM material compared to a standard one (cardboard)

    PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties

    Full text link
    Nanocomposite films based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends and synthesized cellulose nanocrystals (CNC) or surfactant modified cellulose nanocrystals (CNCs), as bio-based reinforcement, were prepared by melt extrusion followed by film forming. The obtained nanocomposites are intended for short-term food packaging. Thus, the mechanical, optical, barrier and wettability properties were studied. Functionalized CNCs contribute to enhance the interfacial adhesion between PLA and PHB, leading to improved mechanical stiffness and increased film stretchability. The synergic effects of the PHB and CNCs on the PLA barrier properties were confirmed by increases in oxygen barrier properties and reductions in surface wettability of the nanocomposites. In addition, the measurements of the viscosity molecular weight for ternary systems showed practically no degradation of PLA and smaller degradation of PHB during processing due to nanocrystal presence. The disintegration process in composting conditions of PLA was delayed by the addition of PHB, while CNC speeded it up. PLA-PHB-CNCs formulations showed enhanced mechanical performance, improved water resistance, reduced oxygen and UV-light transmission, as well as appropriate disintegration in compost suggesting possible applications as packaging materials. (C) 2014 Elsevier Ltd. All rights reserved.This research was supported by the Ministry of Science and Innovation of Spain (MAT2011-28468-C02-01 and MAT2011-28468-C02-02). M.P. Arrieta thanks Generalitat Valenciana (Spain) for Santiago Grisolia Fellowship (GRISOLIA/2011/007) and Universitat Politecnica de Valencia for the Development Support Programme PAID-00-12 (SP20120120). The Authors acknowledge Gesenu S.p.a. for compost supply. Authors gratefully thank Prof. Alfonso Jimenez (University of Alicante, Spain) and Prof. Maria Dolores Salvador Moya (Universitat Politecnica de Valencia) for their assistance with OTR measurements and optical microscope-EDF measurements, respectively.Arrieta, MP.; Fortunati, E.; Dominici, F.; Rayón Encinas, E.; López Martínez, J.; Kenny, JM. (2014). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability. 107:139-149. https://doi.org/10.1016/j.polymdegradstab.2014.05.010S13914910
    corecore