32 research outputs found

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Genome sequencing identify chromosome 9 inversions disrupting ENG in 2 unrelated HHT families

    No full text
    International audienceHereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber disease, is a dominant inherited vascular disorder. The clinical diagnosis is based on the Curaçao criteria and pathogenic variants in the ENG and ACVRL1 genes are responsible for most cases of HHT.Four families with a negative targeted gene panel and selected by a multidisciplinary team were selected and whole-genome sequencing was performed according to the recommendations of the French National Plan for Genomic Medicine. Structural variations were confirmed by standard molecular cytogenetic analysis (FISH).In two families with a definite diagnosis of HHT, we identified two different paracentric inversions of chromosome 9, both disrupting the ENG gene. These inversions are considered as pathogenic and causative for the HHT phenotype of the patients.This is the first time structural variations are reported to cause HHT. As such balanced events are often missed by exon-based sequencing (panel, exome), structural variations may be an under-recognized cause of HHT. Genome sequencing for the detection of these events could be suggested for patients with a definite diagnosis of HHT and in whom no causative pathogenic variant was identified

    Radio frequency additional heating systems issues for the TORE-SUPRA WEST project2013 IEEE 25th Symposium on Fusion Engineering (SOFE)

    No full text
    This year TORE-SUPRA celebrated its 25 years of operation. During this long time a number of technologies have been developed [1]. First of all it was mandatory to develop reliable superconducting magnets at ∌ - 4 K, with superfluid helium as efficient coolant. For the production of steady state discharge, 3 types of Radio Frequency (RF) additional heating systems have been developed: Lower Hybrid Current Drive (LHCD), Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Resonance Heating (ECRH) [2]. To cope with long lasting discharges (up to 380 s × 2.8 MW) and large RF additional heating power (12.3 MW × 3 s), Actively Cooled (AC) Plasma Facing Components (PFC) were deployed in TORE-SUPRA for the first time in a Tokamak environment. TORE-SUPRA is now being modified into an axisymmetric tokamak with actively cooled tungsten main chamber walls and a divertor, the WEST project (W - for tungsten - Environment in Steady-state Tokamak) [3]. This new facility has the objective to offer ITER a test bed for validating the relevant actively cooled metallic technologies in D-shape H-mode plasmas. In contrast to other metallic devices such as JET and ASDEX, WEST will rely only on RF additional power systems. A set of plasma scenarios have been identified, ranging from a high total RF power scenario up to 15 MW during 30 seconds, to a high fluence scenario of 1000 seconds with up to 10 MW of injected RF power. These scenarios are able to reproduce ITER relevant conditions of steady state heat loads of 10 to 20 MW/m, to test tungsten actively cooled divertor technologies with relevant power heat fluxes and particle fluence. The paper presents the main issues regarding WEST project and especially the additional RF power injection systems (2 LHCD antennas, 3 + 4 = 7 MW continuous wave and 3 ICRH antennas, 3 × 3 = 9 MW-30 s or 3 MW-1000 s) for WEST. The front face of the LHCD antennas will be modified to account for the different plasma position and smaller toroidal field ripple, due to the more inward antenna position in the vessel. No other modifications are needed on the Passive-Active Multijunction (PAM) or the Fully-Active Multijunction (FAM) LHCD antennas, or the associated generator (2 × 8 klystrons, 600 kW each CW). Concerning the ICRH system, the main challenges are its ELM-resilience, its compatibility with continuous operation, and the interaction of the RF near fields with neighbouring plasma facing components. 3 new actively cooled antennas are being designed to be matched with an ELMs resilient electric circuit. The proposed solution is based on the JET-EP antenna and CEA prototype tested in 2007, both having identical internal conjugate-T electrical layout and a demonstrated load resilience capacity to plasma edge transients during ELM

    Recent progress on lower hybrid current drive and implications for ITER

    Get PDF
    International audienceThe sustainment of steady-state plasmas in tokamaks requires efficient current drive systems. Lower Hybrid Current Drive (LHCD) is currently the most efficient method to generate a continuous additional off-axis toroidal plasma current as well as reduce the poloidal flux consumption during the plasma current ramp-up phase. The operation of the Tore Supra ITER-like LH launcher has demonstrated the capability to couple LH power at ITER-like power densities with very low reflected power during long pulses. In addition, the installation of eight 700kW/CW klystrons at the LH transmitter has allowed increasing the total LH power in long pulse scenarios. However, in order to achieve pure stationary LH sustained plasmas, some R&D are needed to increase the reliability of all the systems and codes, from the RF sources to the plasma scenario prediction. The CEA/IRFM is addressing some of these issues by leading a R&D program towards an ITER LH system and by the validation of an integrated LH modeling suite of codes. In 2011, the RF design of a mode converter has been validated at low power. A 500 kW/5 s RF window is currently under manufacturing and will be tested at high power in 2012 in collaboration with NFRI. All of this work aims to reduce the operational risks associated with the ITER steady-state operations
    corecore