31 research outputs found
Recommended from our members
Photochemically produced SO2 in the atmosphere of WASP-39b
S.-M.T. is supported by the European Research Council advanced grant EXOCONDENSE (no. 740963; principal investigator: R. T. Pierrehumbert). E.K.H.L. is supported by the SNSF Ambizione Fellowship grant (no. 193448). X.Z. is supported by NASA Exoplanet Research grant 80NSSC22K0236. O.V. acknowledges funding from the ANR project ‘EXACT’ (ANR-21-CE49-0008-01), from the Centre National d’Études Spatiales (CNES) and from the CNRS/INSU Programme National de Planétologie (PNP). L.D. acknowledges support from the European Union H2020-MSCA-ITN-2109 under grant no. 860470 (CHAMELEON) and the KU Leuven IDN/19/028 grant Escher. This work benefited from the 2022 Exoplanet Summer Program at the Other Worlds Laboratory (OWL) at the University of California, Santa Cruz, a programme financed by the Heising-Simons Foundation. T.D. is an LSSTC Catalyst Fellow. J.K. is an Imperial College Research Fellow. B.V.R. is a 51 Pegasi b Fellow. L.W. is an NHFP Sagan Fellow. A.D.F. is an NSF Graduate Research Fellow.Photochemistry is a fundamental process of planetary atmospheres that regulates the atmospheric composition and stability1. However, no unambiguous photochemical products have been detected in exoplanet atmospheres so far. Recent observations from the JWST Transiting Exoplanet Community Early Release Science Program2,3 found a spectral absorption feature at 4.05 μm arising from sulfur dioxide (SO2) in the atmosphere of WASP-39b. WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet orbiting a Sun-like star with an equilibrium temperature of around 1,100 K (ref. 4). The most plausible way of generating SO2 in such an atmosphere is through photochemical processes5,6. Here we show that the SO2 distribution computed by a suite of photochemical models robustly explains the 4.05-μm spectral feature identified by JWST transmission observations7 with NIRSpec PRISM (2.7σ)8 and G395H (4.5σ)9. SO2 is produced by successive oxidation of sulfur radicals freed when hydrogen sulfide (H2S) is destroyed. The sensitivity of the SO2 feature to the enrichment of the atmosphere by heavy elements (metallicity) suggests that it can be used as a tracer of atmospheric properties, with WASP-39b exhibiting an inferred metallicity of about 10× solar. We further point out that SO2 also shows observable features at ultraviolet and thermal infrared wavelengths not available from the existing observations.Publisher PDFPeer reviewe
Central Collisions of Au on Au at 150, 250 and 400 A MeV
Collisions of Au on Au at incident energies of 150, 250 and 400 A MeV were
studied with the FOPI-facility at GSI Darmstadt. Nuclear charge (Z < 16) and
velocity of the products were detected with full azimuthal acceptance at
laboratory angles of 1-30 degrees. Isotope separated light charged particles
were measured with movable multiple telescopes in an angular range of 6-90
degrees. Central collisions representing about 1 % of the reaction cross
section were selected by requiring high total transverse energy, but vanishing
sideflow. The velocity space distributions and yields of the emitted fragments
are reported. The data are analysed in terms of a thermal model including
radial flow. A comparison with predictions of the Quantum Molecular Model is
presented.Comment: LateX text 62 pages, plus six Postscript files with a total of 34
figures, accepted by Nucl.Phys.
The MUSCLES extension for atmospheric transmission spectroscopy: UV and X-ray host-star observations for JWST ERS & GTO targets
Stars and planetary system
Engaging students with online discussion in a blended learning context: Issues and implications
Computer-mediated communication tools have been increasingly used to support face-to-face teaching. In this paper, we explore the motivating and inhibiting factors that affect students' participation in voluntary online discussions in a blended learning context. Students' online participation is conceptualized as a three-phase process: jumpstart online activity, promote interaction and sustain discussion. The results indicate that students' disengagements in online discussions were due to a number of reasons: their perceptions, peer influence, media preferences and the voluntary nature of the activity, to name but a few. Finally, we highlight several issues concerning students' participation in online discussion and their implications for designing meaningful and engaging online discussion in parallel to in-class teaching. © 2009 Springer-Verlag.link_to_subscribed_fulltex
Recommended from our members
The Pandora SmallSat: A Mission to spectroscopically study exoplanet atmospheres
Pandora is a low-cost space telescope designed to measure the composition of distant transiting planets. The Pandora observatory is designed with the capability of measuring precision photometry simultaneously with near-infrared spectroscopy, enabling scientists to disentangle stellar activity from the subtle signature of a planetary atmosphere. The broad-wavelength coverage will provide constraints on the spot and faculae covering fractions of low-mass exoplanet host stars and the impact of these active regions on exoplanetary transmission spectra. Pandora will subsequently identify exoplanets with hydrogen- or water-dominated atmospheres, and robustly determine which planets are covered by clouds and hazes. Pandora observations will also contribute to the study of transit timing variations and phase curve photometry. With a launch readiness date of early-2025, the Pandora mission represents a new class of low-cost space missions that will achieve out-of-this-world science. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Pandora SmallSat data simulation and target selection
Pandora is a SmallSat mission, designed to study the atmospheres of exoplanets using transmission spectroscopy and to investigate the impact that stellar contamination and variability has on observing the spectra of these worlds. Pandora's initial science operation lifetime is one year, so optimizing the science return is critical. Here we present two tools created to assist in the design process. The first is a 2-D spectrum simulator being developed to help refine target selection, optimize observation strategies, and assist in the creation of a data reduction pipeline. The second is a pseudo-retrieval framework that provides a quantifiable method for comparing potential targets against a handful of exoplanetary atmospheric parameters important to the Pandora mission. Preliminary results show Pandora will place tighter constraints on atmospheric properties like water abundance compared to HST and answering its mission objectives will help to inform targets for missions like JWST. © 2022 SPIE.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Advanced materials development for fossil energy conversion applications
Research activities being conducted as part of this project include: (1) fundamental studies of electrochemical processes occurring at surfaces and interfaces in fuel cells, and (2) development of novel materials synthesis and processing methodologies for fossil energy conversion applications. Complex impedance and dc polarization studies of the electrocatalytic activity at the cathode have allowed intrinsic materials properties to be separated from extrinsic properties related to morphology. Mixed conduction in cathode materials was shown to dramatically enhance electrocatalytic activity with this approach. Combustion synthesis methods were used to prepare multicomponent perovskite catalysts in the La{sub 1-x}Sr{sub x}Co{sub 1-y}Fe{sub y}O{sub 3} system. Electronic properties of these catalysts can be altered by adjusting the composition, which affects both catalytic activity and selectivity. Inverse micelles have been utilized to prepare nanosized nickel sulfide particles, which show promise as hydrodesulfurization catalysts for liquefied coal. Self-assembling organic monolayers and derivatized inorganic surfaces have been used to control nucleation and crystal morphology of inorganic phases