165 research outputs found

    A note on the error analysis of classical Gram-Schmidt

    Full text link
    An error analysis result is given for classical Gram--Schmidt factorization of a full rank matrix AA into A=QRA=QR where QQ is left orthogonal (has orthonormal columns) and RR is upper triangular. The work presented here shows that the computed RR satisfies \normal{R}=\normal{A}+E where EE is an appropriately small backward error, but only if the diagonals of RR are computed in a manner similar to Cholesky factorization of the normal equations matrix. A similar result is stated in [Giraud at al, Numer. Math. 101(1):87--100,2005]. However, for that result to hold, the diagonals of RR must be computed in the manner recommended in this work.Comment: 12 pages This v2. v1 (from 2006) has not the biliographical reference set (at all). This is the only modification between v1 and v2. If you want to quote this paper, please quote the version published in Numerische Mathemati

    On the number of simple arrangements of five double pseudolines

    Get PDF
    We describe an incremental algorithm to enumerate the isomorphism classes of double pseudoline arrangements. The correction of our algorithm is based on the connectedness under mutations of the spaces of one-extensions of double pseudoline arrangements, proved in this paper. Counting results derived from an implementation of our algorithm are also reported.Comment: 24 pages, 16 figures, 6 table

    Anelastic spectroscopy study of the spin-glass and cluster spin-glass phases of La2x_{2-x}Srx_{x}CuO4_{4} (0.015<x<0.03)(0.015<x<0.03)

    Full text link
    The anelastic spectra of La2x_{2-x}Srx_{x}CuO4_{4} have been measured at liquid He temperatures slightly below and above the concentration xc0.02% x_{c}\simeq 0.02 which is considered to separate the spin-glass phase from the cluster spin-glass (CSG) phase. For xxcx\le x_{c} all the elastic energy loss functions show a step below the temperature Tg(x=0.02)T_{g}(x=0.02) of freezing into the CSG state, similarly to what found in samples well within the CSG phase, but with a smaller amplitude. The excess dissipation in the CSG state is attributed to the motion of the domain walls between the clusters of antiferromagnetically correlated spin. These results are in agreement with the recent proposal, based on inelastic neutron scattering, of an electronic phase separation between regions with x0x\sim 0 and x0.02x\sim 0.02, at least for x>0.015x>0.015Comment: 5 pages, 3 figures, submitted to Phys. Rev.

    Current cosmological bounds on neutrino masses and relativistic relics

    Get PDF
    We combine the most recent observations of large-scale structure (2dF and SDSS galaxy surveys) and cosmic microwave anisotropies (WMAP and ACBAR) to put constraints on flat cosmological models where the number of massive neutrinos and of massless relativistic relics are both left arbitrary. We discuss the impact of each dataset and of various priors on our bounds. For the standard case of three thermalized neutrinos, we find an upper bound on the total neutrino mass sum m_nu < 1.0 (resp. 0.6) eV (at 2sigma), using only CMB and LSS data (resp. including priors from supernovae data and the HST Key Project), a bound that is quite insensitive to the splitting of the total mass between the three species. When the total number of neutrinos or relativistic relics N_eff is left free, the upper bound on sum m_nu (at 2sigma, including all priors) ranges from 1.0 to 1.5 eV depending on the mass splitting. We provide an explanation of the parameter degeneracy that allows larger values of the masses when N_eff increases. Finally, we show that the limit on the total neutrino mass is not significantly modified in the presence of primordial gravitational waves, because current data provide a clear distinction between the corresponding effects.Comment: 13 pages, 6 figure

    Critical properties of the Fermi-Bose Kondo and pseudogap Kondo models: Renormalized perturbation theory

    Full text link
    Magnetic impurities coupled to both fermionic and bosonic baths or to a fermionic bath with pseudogap density of states, described by the Fermi-Bose Kondo and pseudogap Kondo models, display non-trivial intermediate coupling fixed points associated with critical local-moment fluctuations and local non-Fermi liquid behavior. Based on renormalization group together with a renormalized perturbation expansion around the free-impurity limit, we calculate various impurity properties in the vicinity of those intermediate-coupling fixed points. In particular, we compute the conduction electron T matrix, the impurity susceptibility, and the residual impurity entropy, and relate our findings to certain scenarios of local quantum criticality in strongly correlated lattice models.Comment: 16 pages, 5 figs; (v2) large-N results for entropy of Bose-Kondo model added; (v3) final version as publishe

    Sequential design of computer experiments for the estimation of a probability of failure

    Full text link
    This paper deals with the problem of estimating the volume of the excursion set of a function f:RdRf:\mathbb{R}^d \to \mathbb{R} above a given threshold, under a probability measure on Rd\mathbb{R}^d that is assumed to be known. In the industrial world, this corresponds to the problem of estimating a probability of failure of a system. When only an expensive-to-simulate model of the system is available, the budget for simulations is usually severely limited and therefore classical Monte Carlo methods ought to be avoided. One of the main contributions of this article is to derive SUR (stepwise uncertainty reduction) strategies from a Bayesian-theoretic formulation of the problem of estimating a probability of failure. These sequential strategies use a Gaussian process model of ff and aim at performing evaluations of ff as efficiently as possible to infer the value of the probability of failure. We compare these strategies to other strategies also based on a Gaussian process model for estimating a probability of failure.Comment: This is an author-generated postprint version. The published version is available at http://www.springerlink.co

    Magnetotransport in the Normal State of La1.85Sr0.15Cu(1-y)Zn(y)O4 Films

    Full text link
    We have studied the magnetotransport properties in the normal state for a series of La1.85Sr0.15Cu(1-y)Zn(y)O4 films with values of y, between 0 and 0.12. A variable degree of compressive or tensile strain results from the lattice mismatch between the substrate and the film, and affects the transport properties differently from the influence of the zinc impurities. In particular, the orbital magnetoresistance (OMR) varies with y but is strain-independent. The relations for the resistivity and the Hall angle and the proportionality between the OMR and tan^2 theta are followed about 70 K. We have been able to separate the strain and impurity effects by rewriting the above relations, where each term is strain-independent and depends on y only. We also find that changes in the lattice constants give rise to closely the same fractional changes in other terms of the equation.The OMR is more strongly supressed by the addition of impurities than tan^2 theta. We conclude that the relaxation ratethat governs Hall effect is not the same as for the magnetoresistance. We also suggest a correspondence between the transport properties and the opening of the pseudogap at a temperature which changes when the La-sr ratio changes, but does not change with the addition of the zinc impurities

    Dispersion of Ordered Stripe Phases in the Cuprates

    Full text link
    A phase separation model is presented for the stripe phase of the cuprates, which allows the doping dependence of the photoemission spectra to be calculated. The idealized limit of a well-ordered array of magnetic and charged stripes is analyzed, including effects of long-range Coulomb repulsion. Remarkably, down to the limit of two-cell wide stripes, the dispersion can be interpreted as essentially a superposition of the two end-phase dispersions, with superposed minigaps associated with the lattice periodicity. The largest minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk) Van Hove singularity. The calculated spectra are dominated by two features -- this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a strong correlation between these two features and the experimental photoemission results of a two-peak dispersion in La2x_{2-x}Srx_xCuO4_4, and the peak-dip-hump spectra in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. The differences are suggestive of the role of increasing stripe fluctuations. The 1/8 anomaly is associated with a quantum critical point, here expressed as a percolation-like crossover. A model is proposed for the limiting minority magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
    corecore