783 research outputs found

    Large Scale Semi-supervised Object Detection using Visual and Semantic Knowledge Transfer

    Get PDF
    Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both imagelevel and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting

    Visual and semantic knowledge transfer for large scale semi-supervised object detection

    Get PDF
    Deep CNN-based object detection systems have achieved remarkable success on several large-scale object detection benchmarks. However, training such detectors requires a large number of labeled bounding boxes, which are more difficult to obtain than image-level annotations. Previous work addresses this issue by transforming image-level classifiers into object detectors. This is done by modeling the differences between the two on categories with both image-level and bounding box annotations, and transferring this information to convert classifiers to detectors for categories without bounding box annotations. We improve this previous work by incorporating knowledge about object similarities from visual and semantic domains during the transfer process. The intuition behind our proposed method is that visually and semantically similar categories should exhibit more common transferable properties than dissimilar categories, e.g. a better detector would result by transforming the differences between a dog classifier and a dog detector onto the cat class, than would by transforming from the violin class. Experimental results on the challenging ILSVRC2013 detection dataset demonstrate that each of our proposed object similarity based knowledge transfer methods outperforms the baseline methods. We found strong evidence that visual similarity and semantic relatedness are complementary for the task, and when combined notably improve detection, achieving state-of-the-art detection performance in a semi-supervised setting

    Faddeev calculations for the A=5,6 Lambda-Lambda hypernuclei

    Full text link
    Faddev calculations are reported for Lambda-Lambda-5H, Lambda-Lambda-5He and Lambda-Lambda-6He in terms of two Lambda hyperons plus the respective nuclear clusters, using Lambda-Lambda central potentials considered in past non-Faddeev calculations of Lambda-Lambda-6He. The convergence with respect to the partial-wave expansion is studied, and comparison is made with some of these Lambda-Lambda hypernuclear calculations. The Lambda-Lambda Xi-N mixing effect is briefly discussed.Comment: submitted for publicatio

    High-Temperature Hall Effect in Ga(1-x)Mn(x)As

    Full text link
    The temperature dependence of the Hall coefficient of a series of ferromagnetic Ga(1-x)Mn(x)As samples is measured in the temperature range 80K < T < 500K. We model the Hall coefficient assuming a magnetic susceptibility given by the Curie-Weiss law, a spontaneous Hall coefficient proportional to rho_xx^2(T), and including a constant diamagnetic contribution in the susceptibility. For all low resistivity samples this model provides excellent fits to the measured data up to T=380K and allows extraction of the hole concentration (p). The calculated p are compared to alternative methods of determining hole densities in these materials: pulsed high magnetic field (up to 55 Tesla) technique at low temperatures (less than the Curie temperature), and electrochemical capacitance- voltage profiling. We find that the Anomalous Hall Effect (AHE) contribution to rho_xy is substantial even well above the Curie temperature. Measurements of the Hall effect in this temperature regime can be used as a testing ground for theoretical descriptions of transport in these materials. We find that our data are consistent with recently published theories of the AHE, but they are inconsistent with theoretical models previously used to describe the AHE in conventional magnetic materials.Comment: 6 pages, 5 figures, 1 table. Accepted to Phys.Rev.

    A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism

    Get PDF
    We have identified a highly conserved RNA motif located upstream of genes encoding molybdate transporters, molybdenum cofactor (Moco) biosynthesis enzymes, and proteins that utilize Moco as a coenzyme. Bioinformatics searches have identified 176 representatives in γ-Proteobacteria, δ-Proteobacteria, Clostridia, Actinobacteria, Deinococcus-Thermus species and DNAs from environmental samples. Using genetic assays, we demonstrate that a Moco RNA in Escherichia coli associated with the Moco biosynthetic operon controls gene expression in response to Moco production. In addition, we provide evidence indicating that this conserved RNA discriminates against closely related analogues of Moco. These results, together with extensive phylogenetic conservation and typical gene control structures near some examples, indicate that representatives of this structured RNA represent a novel class of riboswitches that sense Moco. Furthermore, we identify variants of this RNA that are likely to be triggered by the related tungsten cofactor (Tuco), which carries tungsten in place of molybdenum as the metal constituent

    Processing of aluminum-graphite particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Journal of Materials Engineering and Performance 18(9) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.To extend the possibilities of using aluminum/graphite composites as structural materials, a novel process is developed. The conventional methods often produce agglomerated structures exhibiting lower strength and ductility. To overcome the cohesive force of the agglomerates, a melt conditioned high-pressure die casting (MC-HPDC) process innovatively adapts the well-established, high-shear dispersive mixing action of a twin screw mechanism. The distribution of particles and properties of composites are quantitatively evaluated. The adopted rheo process significantly improved the distribution of the reinforcement in the matrix with a strong interfacial bond between the two. A good combination of improved ultimate tensile strength (UTS) and tensile elongation (e) is obtained compared with composites produced by conventional processes.EPSR

    Small-scale solar magnetic fields

    Get PDF
    As we resolve ever smaller structures in the solar atmosphere, it has become clear that magnetism is an important component of those small structures. Small-scale magnetism holds the key to many poorly understood facets of solar magnetism on all scales, such as the existence of a local dynamo, chromospheric heating, and flux emergence, to name a few. Here, we review our knowledge of small-scale photospheric fields, with particular emphasis on quiet-sun field, and discuss the implications of several results obtained recently using new instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure

    HIV latency is reversed by ACSS2-driven histone crotonylation

    Get PDF
    Eradication of HIV-1 (HIV) is hindered by stable viral reservoirs. Viral latency is epigenetically regulated. While the effects of histone acetylation and methylation at the HIV long-terminal repeat (LTR) have been described, our knowledge of the proviral epigenetic landscape is incomplete. We report that a previously unrecognized epigenetic modification of the HIV LTR, histone crotonylation, is a regulator of HIV latency. Reactivation of latent HIV was achieved following the induction of histone crotonylation through increased expression of the crotonyl-CoA-producing enzyme acyl-CoA synthetase short-chain family member 2 (ACSS2). This reprogrammed the local chromatin at the HIV LTR through increased histone acetylation and reduced histone methylation. Pharmacologic inhibition or siRNA knockdown of ACSS2 diminished histone crotonylation-induced HIV replication and reactivation. ACSS2 induction was highly synergistic in combination with either a protein kinase C agonist (PEP005) or a histone deacetylase inhibitor (vorinostat) in reactivating latent HIV. In the SIV-infected nonhuman primate model of AIDS, the expression of ACSS2 was significantly induced in intestinal mucosa in vivo, which correlated with altered fatty acid metabolism. Our study links the HIV/SIV infection-induced fatty acid enzyme ACSS2 to HIV latency and identifies histone lysine crotonylation as a novel epigenetic regulator for HIV transcription that can be targeted for HIV eradication

    Evolution of the nuclear spin-orbit splitting explored via the <sup>32</sup>Si<i>(d,p)</i><sup>33</sup>Si reaction using SOLARIS

    Get PDF
    The spin-orbit splitting between neutron 1p orbitals at 33Si has been deduced using the single-neutron-adding (d,p) reaction in inverse kinematics with a beam of 32Si, a long-lived radioisotope. Reaction products were analyzed by the newly implemented SOLARIS spectrometer at the reaccelerated-beam facility at the National Superconducting Cyclotron Laboratory. The measurements show reasonable agreement with shell-model calculations that incorporate modern cross-shell interactions, but they contradict the prediction of proton density depletion based on relativistic mean-field theory. The evolution of the neutron 1p-shell orbitals is systematically studied using the present and existing data in the isotonic chains of = 17, 19, and 21. In each case, a smooth decrease in the separation of the - orbitals is seen as the respective p-orbitals approach zero binding, suggesting that the finite nuclear potential strongly influences the evolution of nuclear structure in this region
    corecore