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Abstract

Deep CNN-based object detection systems have achieved

remarkable success on several large-scale object detection

benchmarks. However, training such detectors requires a

large number of labeled bounding boxes, which are more

difficult to obtain than image-level annotations. Previous

work addresses this issue by transforming image-level clas-

sifiers into object detectors. This is done by modeling the

differences between the two on categories with both image-

level and bounding box annotations, and transferring this

information to convert classifiers to detectors for categories

without bounding box annotations. We improve this previ-

ous work by incorporating knowledge about object similar-

ities from visual and semantic domains during the transfer

process. The intuition behind our proposed method is that

visually and semantically similar categories should exhibit

more common transferable properties than dissimilar cate-

gories, e.g. a better detector would result by transforming

the differences between a dog classifier and a dog detec-

tor onto the cat class, than would by transforming from

the violin class. Experimental results on the challenging

ILSVRC2013 detection dataset demonstrate that each of our

proposed object similarity based knowledge transfer meth-

ods outperforms the baseline methods. We found strong ev-

idence that visual similarity and semantic relatedness are

complementary for the task, and when combined notably

improve detection, achieving state-of-the-art detection per-

formance in a semi-supervised setting.

1. Introduction

Object detection/localization in images is one of the

most widely studied problems in computer vision. Most ob-

ject detectors adopt strong supervision in learning appear-

* This work was supported by the EU CHIST-ERA D2K Visual Sense

(Visen) project (ANR-12-CHRI-0002-04 and EPSRC EP/K019082/1).

ance models of object categories, that is by using training

images annotated with bounding boxes encompassing the

objects of interest, along with their category labels. The re-

cent success of deep convolutional neural networks (CNN)

[16] for object detection, such as DetectorNet [34], Over-

Feat [30], R-CNN [12], SPP-net [13], Fast R-CNN [11]

and Faster R-CNN [24], is heavily dependent on a large

amount of training data manually labeled with object local-

izations (e.g. PASCAL VOC [8], ILSVRC (subset of Ima-

geNet) [29], and Microsoft COCO [17]).

Although localized object annotations are extremely

valuable, the process of manually annotating object bound-

ing boxes is extremely laborious and unreliable, especially

for large-scale databases. On the other hand, it is usually

much easier to obtain annotations at image level (e.g. from

user-generated tags on Flickr or Web queries). For exam-

ple, ILSVRC contains image-level annotations for 1,000

categories, while object-level annotations are currently re-

stricted to only 200 categories. One could apply image-

level classifiers directly to detect object categories, but this

will result in a poor performance as there are differences in

the statistical distribution between the training data (whole

images) and the test data (localized object instances). Pre-

vious work by Hoffman et al. [14] addresses this issue, by

learning a transformation between classifiers and detectors

of object categories with both image-level and object-level

annotations (“strong” categories), and applying the transfor-

mation to adapt image-level classifiers to object detectors

for categories with only image-level labels (“weak” cate-

gories). Part of this work involves transferring category-

specific classifier and detector differences of visually sim-

ilar “strong” categories equally to a classifier of a “weak”

category to form a detector for that category. We argue that

more can potentially be exploited from such similarities in

an informed manner to improve detection beyond using the

measures solely for nearest neighbor selection.

Our main contribution in this paper is therefore to incor-
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Figure 1. An illustration of our similarity-based knowledge transfer model. The question we investigate is whether knowledge about object

similarities – visual and semantic – can be exploited to improve detectors trained in a semi-supervised manner. More specifically, to adapt

the image-level classifier (up-left) of a “weakly labeled” category (no bounding boxes) into a detector (up-right), we transfer information

about the classifier and detector differences of “strong” categories (with image-level and bounding box annotations, bottom of the figure)

by favoring categories that are more similar to the target category (e.g. transfer information from dog and tiger rather than basketball or

bookshelf to produce a cat detector).

porate external knowledge about object similarities from vi-

sual and semantic domains in modeling the aforementioned

category-specific differences, and subsequently transferring

this knowledge for adapting an image classifier to an object

detector for a “weak” category. Our proposed method is

motivated by the following observations: (i) category spe-

cific difference exists between a classifier and a detector

[12, 14]; (ii) visually and semantically similar categories

may exhibit more common transferable properties than vi-

sually or semantically dissimilar categories; (iii) visual sim-

ilarity and semantic relatedness are shown to be correlated,

especially when measured against object instances cropped

out from images (thus discarding background clutter) [6].

Intuitively, we would prefer to adapt a cat classifier to a cat

detector by using the category-specific differences between

the classifier and the detector of a dog rather than of a violin

or a strawberry (Figure 1). The main advantage of our pro-

posed method is that knowledge about object similarities

can be obtained without requiring further object-level an-

notations, for example from existing image databases, text

corpora and external knowledge bases.

Our work aims to answer the question: can knowledge

about visual and semantic similarities of object categories

(and the combination of both) help improve the perfor-

mance of detectors trained in a weakly supervised setting

(i.e. by converting an image classifier into an object detec-

tor for categories with only image-level annotations)? Our

claim is that by exploiting knowledge about objects that

are visually and semantically similar, we can better model

the category-specific differences between an image classi-

fier and an object detector and hence improve detection per-

formance, without requiring bounding box annotations. We

also hypothesize that the combination of both visual and

semantic similarities can help further improve the detec-

tor performance. Experimental results on the challenging

ILSVRC2013 dataset [29] validate these claims, showing

the effectiveness of our approach of transferring knowledge

about object similarities from both visual and semantic do-

mains to adapt image classifiers into object detectors in a

semi-supervised manner.

2. Related Work

With the remarkable success of deep CNN on large-scale

object recognition [16] in recent years, a substantial number

of CNN-based object detection frameworks have emerged

[11, 12, 13, 24, 30, 34]. However, these object detectors are

trained in a fully supervised manner, where bounding box

annotations are necessary during training.

Recently, there have been several studies in CNN-based

object detection in a weakly-supervised setting [3, 4, 33,

36], i.e. using training images with only image-level la-

bels and no bounding boxes. The common practice is to

jointly learn an appearance model together with the la-

tent object location from such weak annotations. Such ap-

proaches only adopt CNN as a feature extractor, and ex-

haustively mine image regions extracted by region proposal

approaches, such as Selective Search [35], BING [5], and

EdgeBoxes [40]. Oquab et al. [22] develop a weakly su-

pervised CNN end-to-end learning pipeline that learns from

complex cluttered scenes containing multiple objects by ex-

plicitly searching over possible object locations and scales

in the image, which can predict image labels and coarse

locations (but not exact bounding boxes) of objects. Hoff-

man et al. [14] propose a Large Scale Detection through



Adaptation (LSDA) algorithm that learns the difference be-

tween the CNN parameters of the image classifier and ob-

ject detector of a “fully labeled” category, and transfers this

knowledge to CNN classifiers for categories without bound-

ing box annotated data, turning them into detectors. For

LSDA, auxiliary object-level annotations for a subset of

the categories are required for training “strong” detectors.

This can be considered a semi-supervised learning problem

(see Section 3). We improve upon LSDA, by incorporating

knowledge about visual and semantic similarities of object

categories during the transfer from a classifier to a detector.

Another line of related work is to exploit knowledge

transfer from various domains. Transfer learning (TL) [31]

aims to transfer knowledge across different domains or

tasks. Two general categories of TL have been proposed

in previous work: homogeneous TL [7, 21, 14] in a sin-

gle domain but with different data distributions in training

and testing sets, and heterogeneous TL [25, 32, 39] across

different domains or modalities. LSDA treats the transfer

from classifiers to detectors as a homogeneous TL problem

as the data distributions for image classification (whole im-

age features) and object detection (image region features)

are different. The adaptation from a classifier to a detec-

tor is however restricted to the visual domain. Rochan et

al. [25] propose an appearance transfer method by trans-

ferring semantic knowledge (heterogeneous TL) from fa-

miliar objects to help localize novel objects in images and

videos. Our work integrates knowledge transfer via both

visual similarity (homogeneous TL) and semantic related-

ness (heterogeneous TL) to help convert classifiers into de-

tectors. Recently, Shu et al. [32] propose a weakly-shared

Deep Transfer Network (DTN) that hierarchically learns to

transfer semantic knowledge from web texts to images for

image classification, building upon Stacked Auto-Encoders

[2]. DTN takes auxiliary text annotations (user tags and

comments) and image pairs as input, while our semantic

transfer method only needs image-level labels.

3. Task Definition

In our semi-supervised learning case, we assume that

we have a set of “fully labeled” categories and “weakly la-

beled” categories. For the “fully labeled” categories, a large

number of training images with both image-level labels and

bounding box annotations are available for learning the ob-

ject detectors. For each of the “weakly labeled” categories,

we have many training images containing the target object,

but we do not have access to the exact locations of the ob-

jects. This is different from the semi-supervised learning

proposed in previous work [20, 27, 37], where typically a

small amount of fully labeled data with a large amount of

weakly labeled (or unlabeled) data are provided for each

category. In our semi-supervised object detection scenario,

the objective is to transfer the trained image classifiers into

object detectors on the “weakly labeled” categories.

4. Similarity-based Knowledge Transfer

We first describe the Large Scale Detection through

Adaptation (LSDA) framework [14], upon which our pro-

posed approach is based (Section 4.1). We then describe

our proposed knowledge transfer models with the aim of

improving LSDA. Two knowledge domains are explored:

(i) visual similarity (Section 4.2); (ii) semantic relatedness

(Section 4.3). Finally, we combine both models to obtain

our mixture transfer model, as presented in Section 4.4.

4.1. Background on LSDA

Let D be the dataset of K categories to be detected. One

has access to both image-level and bounding box annota-

tions only for a set of m (m ≪ K) “fully labeled” cate-

gories, denoted as B, but only image-level annotations for

the rest of the categories, namely “weakly labeled” cate-

gories, denoted as A. Hence, a set of K image classifiers

can be trained on the whole dataset D (D = A ∪ B), but

only m object detectors (from B) can be learned according

to the availability of bounding box annotations. The LSDA

algorithm learns to convert (K−m) image classifiers (from

A) into their corresponding object detectors through the fol-

lowing steps:

Pre-training: First, an 8-layer (5 convolutional layers

and 3 fully-connected (fc) layers) Alex-Net [16] CNN is

pre-trained on the ImageNet Large Scale Visual Recogni-

tion Challenge (ILSVRC) 2012 classification dataset [29],

which contains 1.2 million images of 1,000 categories.

Fine-tuning for classification: The final weight layer

(1,000 linear classifiers) of the pre-trained CNN is then re-

placed with K linear classifiers. This weight layer is ran-

domly initialized and the whole CNN is then fine-tuned on

the dataset D. This produces a classification network that

can classify K categories (i.e., K-way softmax classifier),

given an image or an image region as input.

Category-invariant adaptation: Next, the classification

network is fine-tuned into a detector with bounding boxes

of B as input, using the R-CNN [12] framework. As in R-

CNN, a background class (fc8BG) is added to the output

layer and fine-tuned using bounding boxes from a region

proposal algorithm, e.g. Selective Search [35]. The fc8
layer parameters are category specific, with 4,097 weights

(fc7 output: 4,096, plus a bias term) in each category, while

the parameters of layers 1-7 are category invariant. Note

that object detectors are not able to be directly trained on A,

since the fine-tuning and training process requires bound-

ing box annotations. Therefore, at this point, the category

specific output layer fc8A stays unchanged. The variation

matrix of fc8B after fine-tuning is denoted as ∆B.

Category-specific adaptation: Finally, each classifier of

categories j ∈ A is adapted into a corresponding detector



by learning a category-specific transformation of the model

parameters. This is based on the assumption that the dif-

ference between classification and detection of a target ob-

ject category has a positive correlation with those of simi-

lar (close) categories. The transformation is computed by

adding a bias vector to the weights of fc8A. This bias vec-

tor for category j is measured by the average weight change

of its k nearest neighbor categories in set B, from classifi-

cation to detection.

∀j ∈ A :
−→
wd

j =
−→
wc

j +
1

k

k∑

i=1

∆
B

j

i

(1)

where ∆
B

j

i

is the fc8 weight variation of the ith nearest

neighbor category in set B for category j ∈ A.
−→
wc and

−→
wd

are, respectively, fc8 layer weights for the fine-tuned clas-

sification and the adapted detection network. The nearest

neighbor categories are defined as those with nearest L2-

norm (Euclidean distance) of fc8 weights in set B.

The fully adapted network is able to detect all K cate-

gories in test images. In contrast to R-CNN, which trains

SVM classifiers on the output of the fc7 layer followed by

bounding box regression on the extracted features from the

pool5 layer of all region proposals, LSDA directly outputs

the score of the softmax “detector”, and subtracts the back-

ground score from this as the final score. This results in

a small drop in performance, but enables direct adaptation

from a classification network into a detection network on

the “weakly labeled” categories, and significantly reduces

the training time.

Hoffman et al. [14] demonstrated that the adapted model

yielded a 50% relative mAP (mean average precision) boost

for detection over the classification-only framework on the

“weakly labeled” categories of the ILSVRC2013 detection

dataset (from 10.31% to 16.15%). They also showed that

category-specific adaptation (final LSDA step) contributes

least to the performance improvement (16.15% with vs.

15.85% without this step), with the other features (adapted

layers 1-7 and background class) being more important.

However, we found that by properly adapting this layer, a

significant boost in performance can be achieved: an mAP

of 22.03% can be obtained by replacing the semi-supervised

fc8A weights with their corresponding supervised network

weights and leaving the other parameters fixed. Thus, we

believe that adapting this layer in an informed manner, such

as making better use of knowledge about object similarities,

will help improve detection.

In the next subsections, we will introduce our knowl-

edge transfer methods using two different kinds of similar-

ity measurements to select the nearest categories and weight

them accordingly to better adapt the fc8 layer, which can

efficiently convert an image classifier into an object detec-

tor for a “weakly labeled” category.

4.2. Knowledge transfer via visual similarity

Intuitively, the object detector of an object category may

be more similar to those of visually similar categories than

of visually distinct categories. For example, a cat detector

may approximate a dog detector better than a strawberry de-

tector, since cat and dog are both mammals sharing common

attributes in terms of shape (both have four legs, two ears,

two eyes, one tail) and texture (both have fur). Therefore,

given a “fully labeled” dataset B and a “weakly labeled”

dataset A, our objective is to model the visual similarity be-

tween each category j ∈ A and all the other categories in

B, and to transfer this knowledge for transforming classi-

fiers into detectors for A.

Visual similarity measure: Visual similarity measure-

ments are often obtained by computing the distance be-

tween feature distributions such as the fc6 or fc7 layer of a

CNN, or in the case of LSDA the fc8 layer parameters. In

our work, we instead forward propagate an image through

the whole fine-tuned classification network (created by the

second step in Section 4.1) to obtain a K-dimensional clas-

sification score vector. This score vector encodes the prob-

abilities of an image being each of the K object categories.

Consequently, for all the positive images of an object cate-

gory j ∈ A, we can directly accumulate the scores of each

dimension, on a balanced validation dataset. We assume

that the normalized accumulated scores (range [0,1]) imply

the similarities between category j and other categories: the

larger the score, the more it visually resembles category j.

This assumption is supported by the analysis of deep CNNs

[1, 15, 38]: CNNs are apt to confuse visually similar cate-

gories, on which they might have higher prediction scores.

The visual similarity (denoted sv) between a “weakly la-

beled” category j ∈ A and a “fully labeled” category i ∈ B
is defined as:

sv(j, i) ∝
1

N

N∑

n=1

CNN(In)i (2)

where In is a positive image from category j of the val-

idation set of A, N is the number of positive images for

this category, and CNN(In)i is the ith CNN output of the

softmax layer on In, namely, the probability of In being

category i ∈ B as predicted by the fine-tuned classification

network. sv(j, i) ∈ [0, 1] is the degree of similarity after

normalization on all the categories in B.

Note that we adopt the fc8 outputs since most of

the computation is integrated into the end-to-end Alex-Net

framework except for the accumulation of classification

scores in the end, saving the extra effort otherwise required

for distance computation if fc6 or fc7 were to be used (two

methods produce similar range of results).

Weighted nearest neighbor scheme: Using Eq. (1), we

can transfer the model parameters based on a category’s k



nearest neighbor categories selected by Eq. (2). This allows

us to directly compare our visual similarity measure to that

of LSDA which uses the Euclidean distance between the

fc8 parameters. An alternative to Eq. (1) is to consider a

weighted nearest neighbor scheme, where weights can be

assigned to different categories based on how visually simi-

lar they are to the target object category. This is intuitive, as

different categories will have varied degrees of similarity to

a particular class, and some categories may have only a few

(or many) visually similar classes. Thus, we modify Eq. (1)

and define the transformation via visual similarity based on

the proposed weighted nearest neighbor scheme as:

∀j ∈ A :
−→
wd

j v
=

−→
wc

j +
m∑

i=1

sv(j, i)∆B
j

i

(3)

It is worth noting that Eq. (1) is a special case of Eq. (3),

where m = k and sv(j, i) = 1/k.

4.3. Knowledge transfer via semantic relatedness

Following prior work [6, 25, 26], we observe that visual

similarity is correlated with semantic relatedness. Accord-

ing to [6], this relationship is particularly strong when mea-

surements are focused on the category instances themselves,

ignoring image backgrounds. This observation is quite in-

triguing for object detection, where the main focus is on the

target objects themselves. Hence, we draw on this fact and

propose transferring knowledge from the natural language

domain to help improve semi-supervised object detection.

Semantic similarity measure: Semantic similarity is a

well-explored area within the Natural Language Processing

community. Recent advances in word embeddings trained

on large-scale text corpora [18, 23] have helped progress

research in this area, as it has been observed that seman-

tically related word vectors tend to be close in the em-

bedding space, and that the embeddings capture various

linguistic regularities [19]. Thus, we encode each of the

K categories as a word vector, more specifically a 300-

dimensional word2vec embedding [18]. As each category

is a WordNet [9] synset, we represent each category as the

sum of the word vectors for each term in its synset, nor-

malized to unit vector by its L2-norm. Out-of-vocabulary

words are addressed by attempting to match case variants of

the words (lowercase, Capitalized), e.g. “aeroplane” is not

in the vocabulary, but “Aeroplane” is. Failing that, we rep-

resent multiword phrases by the sum of the word vectors of

each in-vocabulary word of the phrase, normalized to unit

vector (“baby”+“bed” for baby bed). In several cases, we

also augment synset terms with any category label defined

in ILSVRC2013 that is not among the synset terms defined

in WordNet (e.g. “bookshelf” for the WordNet synset book-

case, and “tv” and “monitor” for display).

Word embeddings often conflate multiple senses of a

word into a single vector, leading to an issue with poly-

semous words. We observed this with many categories,

for example seal (animal) is close to nail and tie (which,

to further complicate matters, is actually meant to refer to

its clothing sense); or the stationery ruler being related to

lion. Since ILSVRC2013 categories are actually WordNet

synsets, it makes perfect sense to exploit WordNet to help

disambiguate the word senses. Thus, we integrate corpus-

based representations with semantic knowledge from Word-

Net, by using AutoExtend [28] to encode the categories

as synset embeddings in the original word2vec embed-

ding space. AutoExtend exploits the interrelations between

synsets, words and lexemes to learn an auto-encoder based

on these constraints, as well as constraints on WordNet re-

lations such as hypernyms (encouraging poodle and dog to

have similar embeddings). We observed that AutoExtend

has indeed helped form better semantic relations between

the desired categories: seal is now clustered with other ani-

mal categories like whale and turtle, and the nearest neigh-

bors for ruler are now rubber eraser, power drill and pencil

box. In our detection experiments (Section 5), we found

that while the ‘naive’ word embeddings performed better

than the baselines, the synset embeddings yielded even bet-

ter results. Thus, we only report the results for the latter.

We represent each category j ∈ A and i ∈ B with their

synset embeddings, and compute the L2-norm of each pair

ds(j, i) as their semantic distance. The semantic similarity

ss(j, i) is inversely proportional to ds(j, i). We can then

transfer the semantic knowledge to the appearance model

using Eq. (3) or its special case Eq. (1) as before.

As our semantic representations are in the form of vec-

tors, we explore an alternative similarity measure as used

in [25]. We assume that each vector of a “weakly labeled”

category j ∈ A (denoted as vj) can be approximately rep-

resented by a linear combination of all the m word vectors

in B: vj ≈ ΓjV , where V = [v1; v2; . . . ; vi; . . . ; vm], and

Γj = [γ1

j , γ
2

j , . . . , γ
i
j , . . . , γ

m
j ] is a set of coefficients of the

linear combination. We are motivated to find the solution

Γ⋆
j which contains as few non-zero components as possi-

ble, since we tend to reconstruct category j with fewer cate-

gories from B (sparse representation). This optimal solution

Γ⋆
j can be formulated as the following optimization:

Γ⋆
j = argmin

Γj>0

(‖vj − ΓjV ‖2 + λ‖Γj‖0) (4)

Note that Γj > 0 is a positive constraint on the coefficients,

since negative components of sparse solutions for semantic

transferring are meaningless: we only care about the most

similar categories and not dissimilar categories. We solve

Eq. (4) by using the positive constraint matching pursuit

(PCMP) algorithm [10]. Therefore, the final transformation

via semantic transferring is formulated as:

∀j ∈ A :
−→
wd

j s
=

−→
wc

j +
m∑

i=1

ss(j, i)∆B
j

i

(5)



where ss(j, i) = γi
j in the sparse representation case.

4.4. Mixture transfer model

We have proposed two different knowledge transfer

models. Each of them can be integrated into the LSDA

framework independently. In addition, since we consider

the visual similarity at the whole image level and the seman-

tic relatedness at object level, they can be combined simul-

taneously to provide complementary information. We use a

simple but very effective combination of the two knowledge

transfer models as our final mixture transfer model. Our

mixture model is a linear combination of the visual similar-

ity and the semantic similarity:

s = intersect[αsv + (1− α)ss] (6)

where intersect[·] is a function that takes the intersection of

cooccurring categories between visual and sparse semantic

related categories. α ∈ [0, 1] is a parameter used to control

the relative influence of the two similarity measurements. α
is set to 1 when only considering visual similarity transfer,

and 0 for the semantic similarity transfer. We will analyze

this parameter in Section 5.3.

5. Experiments

5.1. Dataset overview

We investigate the proposed knowledge transfer mod-

els for large scale semi-supervised object detection on the

ILSVRC2013 detection dataset covering 200 object cate-

gories. The training set is not exhaustively annotated be-

cause of its sheer size. There are also fewer annotated ob-

jects per training image than the validation and testing im-

age (on average 1.53 objects for training vs. 2.5 objects for

validation set). We follow all the experiment settings as in

[14], and simulate having access to image-level annotations

for all 200 categories and bounding box annotations only for

the first 100 categories (alphabetical order). We separate the

dataset into classification and detection sets. For the classi-

fication data, we use 200,000 images in total from all 200

categories of the training subset (around 1,000 images per

category) and their image-level labels. The validation set is

roughly split in half: val1 and val2 as in [12]. For the de-

tection training set, we take the images with their bounding

boxes from only the first 100 categories (B) in val1 (around

5,000 images in total). Since the validation dataset is rel-

atively small, we then augment val1 with 1,000 bounding

box annotated images per class from the training set (fol-

lowing the same protocol of [12, 14]). Finally, we evalu-

ate our knowledge transfer framework on the val2 dataset

(9,917 images in total).

5.2. Implementation details

In all the experiments, we consider LSDA [14] as our

baseline model and follow their main settings. For the

semantic representation, we use word2vec CBoW embed-

dings pre-trained on part of the Google News dataset com-

prising about 100 billion words [18]. We train AutoEx-

tend [28] using WordNet 3.0 to obtain synset embeddings,

and using equal weights for the synset, lexeme and Word-

Net relation constraints (α = β = 0.33). As all categories

are nouns, we use only hypernyms as the WordNet relation

constraint. For the sparse representation of a target word

vector in Eq. (4), we limit the maximum number of non-

zero components to 20, since a target category has strong

correlation with a small number of source categories.

5.3. Quantitative evaluation on the “weakly la­
beled” categories

Setting LSDA as the baseline, we compare the detection

performance of our proposed knowledge transfer methods

against LSDA. The results are summarized in Table 1. As

we are concerned with the detection of the “weakly labeled”

categories, we focus mainly on the second column of the ta-

ble (mean average precision (mAP) on A). Rows 1-5 in Ta-

ble 1 are the baseline results for LSDA. The first row shows

the detection results by applying a classification network

(i.e., weakly supervised learning, and without adaptation)

trained with only classification data, achieving only an mAP

of 10.31% on the “weakly labeled” 100 categories. The

last row shows the results of an oracle detection network

which assumes that bounding boxes for all 200 categories

are available (i.e., supervised learning). This is treated as

the upper bound (26.25%) of the fully supervised frame-

work. We observed that the best result obtained by LSDA

is to adapt both category independent and category specific

layers, and transforming with the weighted fc8 layer weight

change of its 100 nearest neighbor categories (weighted-

100 with 16.33% in Table 1). Our “weighted” scheme

works steadily better than its “average” counterpart.

For our visual knowledge transfer model, we show

steady improvement over the baseline LSDA methods when

considering the average weight change of both 5 and 10 vi-

sually similar categories, with 1.45% and 1.47% increase

in mAP, respectively. This proves that our proposed visual

similarity measure is superior to that of LSDA, showing

that category-specific adaptation can indeed be improved

based on knowledge about the visual similarities between

categories. Further improvement is achieved by modeling

individual weights of all 100 source categories according

to their degree of visual similarities to the target category

(weighted-100 with 19.02% in the table). This verifies our

supposition that the transformation from a classifier to a de-

tector of a certain category is more related to visually sim-

ilar categories, and is proportional to their degrees of sim-



Method
Number of

Nearest Neighbors

mAP on B:

“Fully labeled”

100 Categories

mAP on A:

“Weakly labeled”

100 Categories

mAP on D:

All

200 Categories

Classification Network - 12.63 10.31 11.90

LSDA (only class invariant adaptation) - 27.81 15.85 21.83

avg/weighted - 5 28.12 / – 15.97 / 16.12 22.05 / 22.12

LSDA (class invariant & specific adapt) avg/weighted - 10 27.95 / – 16.15 / 16.28 22.05 / 22.12

avg/weighted - 100 27.91 / – 15.96 / 16.33 21.94 / 22.12

avg/weighted - 5 27.99 / – 17.42 / 17.59 22.71 / 22.79

Ours (visual transfer) avg/weighted - 10 27.89 / – 17.62 / 18.41 22.76 / 23.15

avg/weighted - 100 28.30 / – 17.38 / 19.02 22.84 / 23.66

avg/weighted - 5 28.01 / – 17.32 / 17.53 22.67 / 22.77

Ours (semantic transfer) avg/weighted - 10 28.00 / – 16.67 / 17.50 22.31 / 22.75

avg/weighted - 100 28.14 / – 17.04 / 18.32 23.23 / 23.28

Sparse rep. - ≤20 28.18 19.04 23.66

Ours (mixture transfer model) - 28.04 20.03 ↑3.88 24.04

Oracle: Full Detection Network - 29.72 26.25 28.00

Table 1. Detection mean average precision (mAP) on ILSVRC2013 val2. The first row shows the basic performance of directly using all

classification parameters for detection, without adaptation or knowledge transfer (i.e., weakly supervised learning). The last row shows

results of an oracle detection network which assumes that bounding boxes for all 200 categories are available (i.e., supervised learning).

The second row shows the baseline LSDA results using only feature adaptation. Rows 3-5 show the performance of LSDA for adapting

both the feature layers (layer 1-7) and the class-specific layer (layer 8), by considering different numbers of neighbor categories. Rows 6-8,

9-12 and row 13 show the results of our visual transfer, semantic transfer and mixture transfer model, respectively.

lion motorcycle rugby ball saxophone wine bottle
(a) 

visual 

similarity 

lion motorcycle rugby ball saxophone wine bottle

lion motorcycle

(b) 

semantic 

similarity 

(c) 

mixed 

combination 

rugby ball saxophone wine bottle

Figure 2. Some example visualizations of (a) visual similarity (first row in the figure), (b) semantic similarity (middle row) and (c) mixture

similarity (last row) between a target “weakly labeled” category and its source categories from which to transfer knowledge. For each

target category, the top-10 weighted nearest neighbor categories are shown. The magnitude of each column bar shows the relative weight

(degree of similarity sv , ss, s in Eq. (6), where α is set to 0.6).

ilarity. For example, motorcycle is most similar to bicycle.

Thus the weight change from a bicycle classifier to detector

has the largest influence on the transformation of motorcy-

cle. The influence of less visually relevant categories, such

as cart and chain saw, is much smaller. For visually dis-

similar categories (apple, fig, hotdog, etc.), the influence is

extremely insignificant. We show some examples of visual

similarities between a target category and its source cate-

gories in the first row of Figure 2. For each target category,

the top-10 weighted nearest neighbor categories with their

similarity degrees are visualized.

Our semantic knowledge transfer model also showed

marked improvement over the LSDA baseline (Table 1,

Rows 9-12), and is comparable to the results of the vi-

sual transfer model. This suggests that the cross-domain

knowledge transfer from semantic relatedness to visual sim-

ilarity is very effective. The best performance for the se-

mantic transfer model (19.04%) is obtained by sparsely re-

constructing the target category with the source categories

using the synset embeddings. The results of using synset

embeddings (18.32%, using weighted-100, the same be-

low) are superior to using ‘naive’ word2vec embeddings
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watercraft 

trumpet snowmobile 

wine bottle pencil sharpener person toaster microphone 

rabbit laptop violin turtle lemon monkey 

soccer ball 

sunglasses 

sofa 

racket 

table 

pineapple 

Figure 3. Examples of correct detections (true positives) of our mixture knowledge transfer model on ILSVRC2013 images. For each

image, only detections for the “weakly labeled” target category (text below image) are listed.
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motorcycle 
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racket 

toaster 
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squirrel 

lipstick 

orange 

perfume tv or monitor 

pomegranate lion 

Figure 4. Examples of incorrect detections (confusion with other objects) of our mixture knowledge transfer model on ILSVRC2013

images. The detected object label is shown in the top-left of its bounding box.

(17.83%) and WordNet based measures such as path-based

similarity (17.08%) and Lin similarity [?] (17.31%). Sev-

eral examples visualizing the related categories of the 10

largest semantic reconstruction coefficients are shown in the

middle row of Figure 2. We observe that semantic related-

ness indeed correlates with visual similarity.

The state-of-the-art result for semi-supervised detec-

tion on this dataset is achieved by our mixture trans-

fer model which combines visual similarity and semantic

relatedness. A boost in performance of 3.88% on orig-

inal split (3.82%±0.12%, based on 6 different splits of

the dataset) is achieved over the best result reported by

LSDA on the “weakly labeled” categories. We show ex-

amples of transferred categories with their corresponding

weights for several target categories in the bottom row of

Figure 2. The parameter α in Eq. (6) for the mixture

model weights is set to 0.6 for final detection, where α ∈
{0, 0.2, 0.4, 0.5, 0.6, 0.8, 1} is chosen via cross-validation

on the val1 detection set (Figure 5). This suggests that

the transferring of visual similarities is slightly more im-

portant than semantic relatedness, although both are indeed

complementary. Figures 3 and 4 show some examples of

correct and incorrect detections respectively. Although our

proposed mixture transfer model achieves the state-of-the-

art in detecting the “weakly labeled” categories, it is still

occasionally confused by visually similar categories.

Figure 5. Sensitivity of parameter α vs. mAP.

6. Conclusion

In this paper, we investigated how knowledge about ob-

ject similarities from both visual and semantic domains can

be transferred to adapt an image classifier to an object de-

tector in a semi-supervised setting. We found clear evidence

that both visual and semantic similarities play an essential

role in improving the adaptation process, and that the com-

bination of the two modalities yielded state-of-the-art per-

formance, suggesting that knowledge inherent in visual and

semantic domains is complementary. Future work includes

extracting more knowledge from different domains, using

better representations, and investigating the possibility of

using category-invariant properties, e.g. the difference be-

tween feature distributions of whole images and target ob-

jects, to help knowledge transfer. We believe that the com-

bination of knowledge from different domains is key to im-

proving semi-supervised object detection.
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