1,679 research outputs found

    Exponential-Potential Scalar Field Universes I: The Bianchi I Models

    Full text link
    We obtain a general exact solution of the Einstein field equations for the anisotropic Bianchi type I universes filled with an exponential-potential scalar field and study their dynamics. It is shown, in agreement with previous studies, that for a wide range of initial conditions the late-time behaviour of the models is that of a power-law inflating FRW universe. This property, does not hold, in contrast, when some degree of inhomogeneity is introduced, as discussed in our following paper II.Comment: 16 pages, Plain LaTeX, 1 Figure to be sent on request, to appear in Phys. Rev.

    A molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids

    Full text link
    We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferro-solids the observed susceptibility is considerably lowered when compared to ferrofluids.Comment: 33 pages including 12 figures, requires RevTex

    Observation of two relaxation mechanisms in transport between spin split edge states at high imbalance

    Full text link
    Using a quasi-Corbino geometry to directly study electron transport between spin-split edge states, we find a pronounced hysteresis in the I-V curves, originating from slow relaxation processes. We attribute this long-time relaxation to the formation of a dynamic nuclear polarization near the sample edge. The determined characteristic relaxation times are 25 s and 200 s which points to the presence of two different relaxation mechanisms. The two time constants are ascribed to the formation of a local nuclear polarization due to flip-flop processes and the diffusion of nuclear spins.Comment: Submitted to PR

    Nonperturbative Corrections to One Gluon Exchange Quark Potentials

    Full text link
    The leading nonperturbative QCD corrections to the one gluon exchange quark-quark, quark-antiquark and qqˉq \bar{q} pair-excitation potentials are derived by using a covariant form of nonlocal two-quark and two-gluon vacuum expectation values. Our numerical calculation indicates that the correction of quark and gluon condensates to the quark-antiquark potential improves the heavy quarkonium spectra to some degree.Comment: LaTex, 16 pages, three figures, to appear in Nucl. Phys.

    The Origin of Galactic Cosmic Rays

    Get PDF
    Motivated by recent measurements of the major components of the cosmic radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a model in which there are two distinct kinds of cosmic ray accelerators in the galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per nucleon suggests that these two elements do not have the same spectrum of magnetic rigidity over this entire region and that these two dominant elements therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures, uuencode

    Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles

    Full text link
    We present a microscopic theory of single-electron tunneling through metallic nanoparticles connected to the electrodes through molecular bridges. It combines the theory of electron transport through molecular junctions with the description of the charging dynamics on the nanoparticles. We apply the theory to study single-electron tunneling through a gold nanoparticle connected to the gold electrodes through two representative benzene-based molecules. We calculate the background charge on the nanoparticle induced by the charge transfer between the nanoparticle and linker molecules, the capacitance and resistance of molecular junction using a first-principles based Non-Equilibrium Green's Function theory. We demonstrate the variety of transport characteristics that can be achieved through ``engineering'' of the metal-molecule interaction.Comment: To appear in Phys. Rev.

    Dynamic Front Transitions and Spiral-Vortex Nucleation

    Full text link
    This is a study of front dynamics in reaction diffusion systems near Nonequilibrium Ising-Bloch bifurcations. We find that the relation between front velocity and perturbative factors, such as external fields and curvature, is typically multivalued. This unusual form allows small perturbations to induce dynamic transitions between counter-propagating fronts and nucleate spiral vortices. We use these findings to propose explanations for a few numerical and experimental observations including spiral breakup driven by advective fields, and spot splitting
    corecore