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Abstract. Higher-order derivatives of kinematic mappings give insight into the motion character-
istics of complex mechanisms. Screw theory and its associated Lie group theory have been used
to find these derivatives of loop closure equations up to an arbitrary order. However this has not
been extended to the higher-order derivatives of finite motion as given by the inverse or forward
kinematic model of closed loop mechanisms. In this paper, a recursive algorithm is presented, con-
sisting solely of matrix multiplications, which is capable of giving these higher-order derivatives of
kinematic models of closed loop linkages. It depends on a simplified representation of the higher-
order derivatives of an open chain. From these higher-order derivatives a Taylor expansion of a
finite motion becomes available. The evaluation of this method on a Taylor approximation (up to
5th order) of the inverse kinematic model of a 5-bar mechanism shows a good approximation in a
large part of workspace around the evaluation point.
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1 Introduction

Geometric insight of infinitesimal motion of spatial kinematics can be obtained with
the differential analysis of screw theory. This theory gives the kinematic relations
between the general velocities of bodies (twists) and general constraint forces (con-
straint wrenches) acting on a system. This instantaneous analysis is only available in
the pose of inspection, and in general does not give an understanding of the possible
finite motion of a mechanism. For synthesis and analysis purposes, attempts have
been made to extend the infinitesimal screw analysis. The finite forward kinematic
model of open loop chains is given by Brockett’s products of exponents (POE)[1].
It consists of the products of exponential matrices of the instantaneous screw axes.
Derivatives up to an arbitrary order of loop closure equations can be found by taking
Lie brackets of instantaneous screw axes, which can be expressed as matrix multi-
plications of twists[2, 3]. This paves the way for an algorithmic differentiation-free
derivatives of the loop closure equations [4].

However, higher-order derivatives and approximations of the finite motion of
these closed loop mechanisms were not yet found. These higher-order derivatives
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of finite motion can be used for finding conditions for invariant properties of kine-
matics and dynamics such as required for balancing, synthesis and analysis of rigid
body motions. Moreover, such an approximation is advantageous since closed form
kinematic mappings are not always available for the more complex mechanisms.
Unfortunately, processing these higher-order, multivariate derivatives require elab-
orate bookkeeping, as can be seen in the implementation of the higher-order chain
rule, the Faa di Bruno’s rule[5].

In this paper a simplified representation of the higher-order derivatives of the
screw systems is presented which has a structure similar to the Brockett’s POE.
With Vetters method for managing higher order matrix derivatives [6] this enables
us to obtain a recursive, differentiation-free algorithm for higher-order derivatives
of the solution to the closure equations. Using the resulting higher-order closure
Jacobians, a Taylor approximation of the closed loop kinematics is performed. The
steps taken are exemplified with an approximation of the inverse kinematic model
of a 5-bar mechanism.

Before we introduce the higher-order derivatives of the loop closure solution,
the screw algebra theory is revisited and applied to an open chain. Based on this a
simplified representation of higher-order derivatives of an open chain is presented
(2.2). After this the loop closure equations and the matrix derivatives are revisited
(2.3-2.4). Using these rules finally the algorithm for determining the higher-order
derivatives and its Taylor expansion is presented (2.5) and its implementation shown
for a 5-bar mechanism (2.6).

2 Method

2.1 Concepts and notation

In the notation of screw theory as used in this paper, a reference frame (ψi) is asso-
ciated to each rigid body i. Points in space (aaa) can be expressed with respect to this
reference frame (denoted with superscript aaai). A change of reference frame follows
from the homogeneous transformation matrix which consists of a rotation matrix
(RRR) and a translation vector (ooo). In the homogeneous representation the aaai-vector is
appended with a 1.

aaa j = HHH j
i aaai HHH j

i =

[
RRR j

i ooo j
i

000 1

]
ḢHH j

i =

[[
ωωω

j
i×
]

vvv j
i

000 0

]
HHH j

i =
[
ttt j, j

i ×
]
HHH j

i (1)

The time derivative of the transformation matrix is given by the twist (tttk, j
i ), th gen-

eralized velocity, of body i with respect to body j expressed in frame k. For clarity
reasons the subscript and second superscript are omitted when possible. The twist is
a vector containing the angular (ωωω) and translational (vvv) velocity. The

[
ωωω×

]
denotes

the skew symmetric matrix form of ωωω . The twist’s frame of expression changes with
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the adjoint transformation matrices here denoted with Ad
(
HHH j

i

)
.

ttt j = Ad
(
HHH j

i

)
ttt i Ad

(
HHH j

i

)
=

[
RRR j

i 000[
ooo j

i×
]
RRR j

i RRR j
i

]
(2)

The time derivative of adjoint transformation matrix is given in terms of instanta-
neous transformation matrix ad

(
ttt
)
.

d
dt

(
Ad
(
HHH j

i

))
= ad

(
ttt j, j

i

)
Ad
(
HHH j

i

)
ad
(
ttt
)
=

[[
ωωω×

]
000[

vvv×
] [

ωωω×
]] (3)

This matrix itself can be expressed in an other reference frame according to a nested
transform:

ad
(
ttt j)= ad

(
Ad
(
HHH j

i

)
ttt i
)
= Ad

(
HHH j

i

)
ad
(
ttt i)Ad

(
HHH i

j
)

(4)

Using these twists, a concise formulation for the forward kinematic mapping of an
open chain is available in the form of Brockett’s product of exponentials [1]:

Ad
(
HHH0

n(qqq)
)
=

n

∏
i=1

Ad
(
HHH i−1

i (qi)
)
=

n

∏
i=1

ead
(

t̂tt0
i

)
qiAd

(
HHH0

n(0)
)

(5)

In here, the instantaneous screw vector t̂tt0
i , denoted with a hat, specifies the amount

of twist generated by the instantaneous motion of joint i, and is therefore a pure
geometric entity. As this screw vector is always with respect to the previous body
in the chain, the second superscript is omitted. The instantaneous screw vector of
lower kinematic pairs are constant when expressed in the connecting frames e.q.
d
dt

(
t̂tt i−1

i

)
= d

dt

(
t̂tt i

i

)
= 000.

2.2 Derivatives of twist systems (open chain)

For an open chain, the higher-order partial derivatives can be found using the trans-
formations of the previous section. A chain of transformations can be decomposed
into constant and varying part of which the derivative is available. The nested trans-
form (4) of the twist gives a concise formulation of the derivative of a chain, pro-
vided that i≤ n.

d
dqi

(
Ad
(
HHH0

n
))

= Ad
(
HHH0

i−1
) d

dqi

(
Ad
(
HHH i−1

i
))

Ad
(
HHH i

n
)

(6)

= Ad
(
HHH0

i−1
)
ad
(
t̂tt i−1

i
)
Ad
(
HHH i−1

i
)
Ad
(
HHH i

n
)

(7)

= ad
(
t̂tt0

i
)
Ad
(
HHH0

n
)

(8)
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For the second-order, such a concise representation also exists. For the consec-
utive derivative with respect to joint j there exist two possibilities, either it is after
body i in the chain (case 1.) or before i in the chain (case 2).

1. Case 1. (i ≤ j) In the case that joint j is higher in the chain than i, the twist is
unaffected ( d

dq j

(
ad
(
t̂tt0

i
))

= 0). Therefore, the second partial derivative becomes:

d
dq j

d
dqi

(
Ad
(
HHH0

n
))

= ad
(
t̂tt0

i
)
ad
(
t̂tt0

j
)
Ad
(
HHH0

n
)

(9)

2. Case 2. (i ≥ j) In the case that j is below i in the chain we use the nested trans-
form property to split the chain into a dependent and independent part. It may be
verified that d

dq j

(
ad
(
t̂tt j

i
)
Ad
(
HHH j

n
))

= 0. Therefore:

d
dq j

d
dqi

(
Ad
(
HHH0

n
))

=
d

dq j

(
Ad
(
HHH0

j
)
ad
(
t̂tt j

i
)
Ad
(
HHH j

n
))

(10)

=
d

dq j

(
Ad
(
HHH0

j
))

ad
(
t̂tt j

i
)
Ad
(
HHH j

n
)

(11)

Using (8) a matrix chain can be found and collected again using the nested trans-
form:

d
dq j

d
dqi

(
Ad
(
HHH0

n
))

= ad
(
t̂tt0

j
)
ad
(
t̂tt0

i
)
Ad
(
HHH0

n
)

(12)

Leaves us with an expression similar to (9), with the difference that sequence of
multiplication is swapped. This also follows from the symmetry (commutativity)
property of mixed partial derivatives: d

dq j
d

dqi

(
Ad
(
HHH0

n
))

= d
dqi

d
dq j

(
Ad
(
HHH0

n
))

.
A consecutive application of (9), and (12) gives us the geometrical higher-order

partial derivatives for any order, supplied in multi-index ααα1, which is ordered from
the base to the end-effector.

D(ααα)
qqq
(
Ad
(
HHH0

n
))

=
n

∏
i=1

((ad
(
t̂tt0

i
)
)ααα(i))Ad

(
HHH0

n
)

(13)

This result is similar to that of [3], with the difference that the index ranges to dis-
tinguish between the sequence of derivatives are taken into account by the ordering
of ααα . From the commutative property of mixed partial derivatives it follows that for
whatever sequence of differentiation the same results are obtained. Furthermore, it
can be seen that (13) resembles the structure of the Brockett’s formula (5) in the
sense that the matrix multiplications follow the physical ordering of the chain.

1 D(k)
xxx (AAA) denotes the matrix collection of all k-th order partial derivatives of AAA with respect to

xxx. D(ααα)
xxx (AAA) denotes the mixed partial derivative with respect to the elements of xxx. A sequence of

derivatives to each xxxi with an order of the corresponding ααα i value. This assumes that the mixed
partial derivative are commutative.



Differentiation-free Taylor approximation of finite motion in closed loop kinematics 5

2.3 Loop closure equations

The open-loop chain derivatives (13) can be used for closed loops, as a closed loop
can be seen as a connection of multiple open-loops. E.g., a simple loop can be seen
as a open chain of with the last link fixed to the base. The loop closure equation
( f ) states how the members of the loop are constrained. It can be written in terms
of independent (uuu) and dependent coordinates (vvv), also termed input and output,
respectively. The total set of coordinates we call sss> =

[
uuu> vvv>

]
. The solution to this

problem is denoted by c, which can be the inverse, forward, or any other kinematic
model giving an exact relation between independent and dependent coordinates.

f (uuu,vvv) = 000 vvv = c(uuu) (14)

The solution (c) to the loop closure is usually not available for complex mechanisms.
Therefore, we are looking for a Taylor expansion using higher-order derivatives of
the constraint formulation using the open loop derivatives of section 2.2. We start
with the first order. This reads:

000 = Dt ( f ) = Duuu ( f ) u̇uu+Dvvv ( f ) v̇vv =UUUu̇uu+VVV v̇vv (15)

This gives rise to the Jacobians (CCC) and (KKK), respectively linking v̇vv and ẇww to u̇uu.

v̇vv =−VVV−1UUUu̇uu =CCCu̇uu = Duuu (c) u̇uu ṡss = KKKu̇uu =

[
CCC
III

]
u̇uu (16)

We already have seen that closure equations can be written as a function of transfor-
mation matrices of the open chain. Therefore, the higher-order partial derivatives of
D(ααα)

sss (UUU) and D(ααα)
sss (VVV ) are available. Now we are looking for a method of writing

the higher-order closure Jacobian CCCk = D(k)
uuu (c)

2.4 Multivariate matrix derivatives using Kronecker product

The higher-order partial derivatives of matrices can be managed with the use of the
Kronecker product [6]. Here the partial derivative version of the product rule, the
chain rule and the inverse matrix derivative are given.

• Product rule of AAA(xxx)∈Rn×m, BBB(xxx)∈Rm×q, for xxx∈Rr, and III is an identity matrix:

Dxxx (AAABBB) =
[
Dxxx (aaa1)BBB . . . Dxxx (aaam)BBB

]
+AAADxxx (BBB) (17)

= Dxxx (AAA)(BBB⊗ IIIr)+AAADxxx (BBB) (18)

• Chain rule:
Dccc (AAA(bbb(ccc))) = Dbbb (AAA)(IIIm⊗Dccc (bbb)) (19)

• Derivative of matrix inversion:
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Dxxx
(
AAA−1)=−AAA−1Dxxx (AAA)(AAA

−1⊗ IIIr) (20)

Recursive applications of these rules allow the extension of these derivatives to
higher orders.

2.5 Higher-order closure Jacobians and Taylor approximation

Using the rules of the previous section, the second-order derivatives (Hessian) of
the solution to the constraint equations are found. This is done by consecutive ap-
plication of the chain rule, the product rule, and the inverse matrix derivative to the
Jacobian (16) .

Duuu (CCC1) =CCC2 =−[Dsss
(
VVV−1)(UUU⊗ III)−VVV−1Dsss (UUU)](III⊗KKK) (21)

=−VVV−1[Dsss (VVV )(CCC1⊗ III)+Dsss (UUU)](III⊗KKK) (22)

After reordering and combination of the Kronecker products, we can find a concise
formulation of the Hessian matrix.

CCC2 =−VVV−1 [Dsss (VVV ) Dsss (UUU)
]
(KKK⊗KKK) =−VVV−1FFF2GGG2 (23)

A further derivation is applied to show that a similar structure as the Hessian can be
found for the 3rd derivative. For higher orders this process can be repeated until the
desired order is reached, giving us a recursive algorithm.

Duuu (CCC2) =−VVV−1 [Dsss (VVV ) Dsss (FFF2) FFF2
]CCC2⊗KKK

GGG2⊗KKK
Duuu (GGG2)

=−VVV−1FFF3GGG3 (24)

This algorithm consist of three steps: 1) The higher-order derivatives of VVV , and UUU
are filled into the proper location of FFFk. These can be found a priori by higher-
order screw derivatives of the open-loop equivalent. 2) The GGGk matrix is filled with
precursory, lower-order results. 3) The combination of the three matrices give the
subsequent partial derivative of the closure Jacobian (CCCk). The derivatives of the GGGk
matrix involves permutation for the derivatives of the Kronecker product [6]. The
exact nature of this permutation is outside the scope of this paper.

The Taylor approximation of the loop closure solution can now be written using
the partial derivatives of the closure Jacobians up to the k-th order. We assume that
at the evaluation point the closure constraint is satisfied, and that sss = 000 such that the
Taylor series becomes a Maclaurin series. The input for the independent variables
is given as a power (denoted with the ⊗i) of Kronecker products [6]:

vvv(uuu) = 000+CCC1uuu+
1
2!

CCC2(uuu⊗uuu)+
1
3!

CCC3(uuu⊗uuu⊗uuu)+ . . .≈
k

∑
i=1

1
i!

CCCiuuu⊗i (25)



Differentiation-free Taylor approximation of finite motion in closed loop kinematics 7

2.6 Approximate solution of a 5-bar mechanism

The higher-order derivatives and Taylor expansion is applied to approximate the
inverse kinematic model of a 5-bar mechanism. We choose to describe the 5-bar as
a connection of two open chains (a, and b) with joints q1, q2 and q3, q4 respectively.
The connection point is the end-effector xxx0. This point has to satisfy the constraint
equation from both sides (a, b) calculated using the connection point in the local
frame (xxx2 and xxx4). The closure equation can be written as:

xxx0
a = HHH0

2(qqq1,2)xxx
2 xxx0

b = HHH0
4(qqq3,4)xxx

4 f : 000 =

[
xxx0− xxx0

a
xxx0− xxx0

b

]
(26)

Using the end-effector coordinates (uuu = xxx0) as input and the 4 joint angles (vvv =[
q1 . . . q4

]>) as output, the first-order partial derivatives of the closure equation
become:

Duuu ( f ) =UUU =

[
III
III

]
Dvvv ( f ) =VVV =

[[
t̂tt0

1×
]
xxx0

a
[
t̂tt0

2×
]
xxx0

a 000 000
000 000

[
t̂tt0

3×
]
xxx0

b

[
t̂tt0

4×
]
xxx0

b

]
(27)

The higher-order partial derivatives can be found by using the twist derivatives of
2.2 and recursive equations of 2.5.

3 Results

The Taylor approximation, up to the 5-th order, is done for 200 positions of the
end-effector (xxx0) forming 4 trajectories through the workspace with the aim to find
an approximation of the corresponding joint displacement of the joints (q1 . . .q4).
For evaluation of the quality of the Taylor approximation, the end-effector position
approximation from the left (xxx0

a) and right (xxx0
b) side are plotted together with input

trajectories.
The result of the Taylor approximation (Figure 1) shows that in a large portion of

the workspace around the evaluation point (xxx0 = 000) the approximation converges to
input indicating a correct estimation of finite joint displacement. However, further
from the evaluation point the accuracy is less as can be seen in the insert.

4 Discussion and conclusion

For the calculation of higher-order partial derivatives, this method uses Kronecker
products of matrices, which can lead to very large matrices for larger systems and
higher orders. This possibly poses practical limits on applicability of this procedure.
Sparse matrices and the aggregation of mixed partial derivatives can be used to mit-
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x(m)

-4 -3 -2 -1 0 1 2 3 4

y(
m

)

-3

-2

-1

0

1

2

q4

q3

xxx

q1

q2

2b 3b4a

4b
5a

5b
Input

3a

Fig. 1 The Taylor approximation of the IKM of a 5-bar (solid black) around evaluation point at
xxx0 = [0,0] up to the 5th order for 4 different trajectories. It shows the left (solid colored) and right
(dashed colored) estimation of end-effector trajectory (dashed black). The insert shows conver-
gence for higher-order estimation far from the evaluation point.

igate the memory usage and reduce the number of matrix operations. It is worth
investigating what determines the validity of the Taylor approximations in kinemat-
ics, such as the radius of convergence and the closeness to singularities.

In this paper, a recursive method was presented which gives the higher-order par-
tial derivatives of closure Jacobians of open and closed loop mechanisms consisting
of lower kinematic pairs. This method relied on a simplified representation of the
higher-order twist derivatives, also presented here, and the matrix derivatives of Vet-
ter [6]. This enabled the Taylor approximation of a kinematic mapping over a given
trajectory, as exemplified the 5-bar mechanism.
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