41 research outputs found

    The Effect of Shadowing on Initial Conditions, Transverse Energy and Hard Probes in Ultrarelativistic Heavy Ion Collisions

    Get PDF
    The effect of shadowing on the early state of ultrarelativistic heavy ion collisions is investigated along with transverse energy and hard process production, specifically Drell-Yan, J/ψJ/\psi, and ΄\Upsilon production. We choose several parton distributions and parameterizations of nuclear shadowing, as well as the spatial dependence of shadowing, to study the influence of shadowing on relevant observables. Results are presented for Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV and Pb+Pb collisions at sNN=5.5\sqrt{s_{NN}} = 5.5 TeV.Comment: Submitted to Phys. Rev.

    A Precise Measurement of the Muon Neutrino-Nucleon Inclusive Charged Current Cross-Section off an Isoscalar Target in the Energy Range 2.5 < E_\nu < 40 GeV by NOMAD

    Get PDF
    We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range 2.5≀EΜ≀402.5 \leq E_\nu \leq 40 GeV. The significance of this measurement is its precision, ±4\pm 4% in 2.5≀EΜ≀102.5 \leq E_\nu \leq 10 GeV, and ±2.6\pm 2.6% in 10≀EΜ≀4010 \leq E_\nu \leq 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.Comment: 14 pages, 3 figures, submitted to Phys.Lett.

    A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in NOMAD

    Get PDF
    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to 1.44×1061.44 \times 10^6 muon-neutrino Charged Current interactions in the energy range 2.5≀EΜ≀3002.5 \leq E_{\nu} \leq 300 GeV. Neutrino events with only one visible π0\pi^0 in the final state are expected to result from two Neutral Current processes: coherent π0\pi^0 production, {\boldmath Îœ+A→Μ+A+π0\nu + {\cal A} \to \nu + {\cal A} + \pi^0} and single π0\pi^0 production in neutrino-nucleon scattering. The signature of coherent π0\pi^0 production is an emergent π0\pi^0 almost collinear with the incident neutrino while π0\pi^0's produced in neutrino-nucleon deep inelastic scattering have larger transverse momenta. In this analysis all relevant backgrounds to the coherent π0\pi^0 production signal are measured using data themselves. Having determined the backgrounds, and using the Rein-Sehgal model for the coherent π0\pi^0 production to compute the detection efficiency, we obtain {\boldmath 4630±522(stat)±426(syst)4630 \pm 522 (stat) \pm 426 (syst)} corrected coherent-π0\pi^0 events with Eπ0≄0.5E_{\pi^0} \geq 0.5 GeV. We measure {\boldmath σ(ÎœA→ΜAπ0)=[72.6±8.1(stat)±6.9(syst)]×10−40cm2/nucleus\sigma (\nu {\cal A} \to \nu {\cal A} \pi^0) = [ 72.6 \pm 8.1(stat) \pm 6.9(syst) ] \times 10^{-40} cm^2/nucleus}. This is the most precise measurement of the coherent π0\pi^0 production to date.Comment: 23 pages, 9 figures, accepted for publication in Phys. Lett.

    A Search for Single Photon Events in Neutrino Interactions

    Get PDF
    We present a search for neutrino-induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is ≃25\simeq 25 GeV. The search is motivated by an excess of electron-like events in the 200--475 MeV energy region as reported by the MiniBOONE experiment. In NOMAD, photons are identified via their conversion to e+e−e^+e^- in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurring outside the fiducial volume. All three backgrounds are determined {\it in situ} using control data samples prior to opening the `signal-box'. In the signal region, we observe {\bf 155} events with a predicted background of {\bf 129.2 ±\pm 8.5 ±\pm 3.3}. We interpret this as null evidence for excess of single photon events, and set a limit. Assuming that the hypothetical single photon has a momentum distribution similar to that of a photon from the coherent π0\pi^0 decay, the measurement yields an upper limit on single photon events, {\boldmath <4.0×10−4< 4.0 \times 10^{-4}} per \nm\ charged current event. Narrowing the search to events where the photon is approximately collinear with the incident neutrino, we observe {\bf 78} events with a predicted background of {\bf 76.6 ±\pm 4.9 ±\pm 1.9} yielding a more stringent upper limit, {\boldmath <1.6×10−4< 1.6 \times 10^{-4}} per \nm\ charged current event

    Phylum Granuloreticulosea

    No full text
    corecore