531 research outputs found

    A source time reversal method for seismicity induced by mining

    Get PDF
    In this work, we present a modified Time-Reversal Mirror (TRM) Method, called Source Time Reversal (STR), to find the spatial distribution of a seismic source induced by mining activity. This methodology is based on a known full description of the temporal dependence of the source, the Duhamel's principle, and the time-reverse property of the wave equation. We also provide an error estimate of the reconstruction when the measurements are acquired over the entire boundary, and we show experimentally the influence of measuring on a subdomain of the boundary. Numerical results indicate that the methodology is able to recover continuous and discontinuous sources, and it remains stable for partial boundary measurements

    Diffractive sidewall grating coupler: towards 2D free-space optics on chip.

    Get PDF
    Silicon photonics has been the subject of intense research efforts. In order to implement complex integrated silicon photonic devices and systems, a wide range of robust building blocks is needed. Waveguide couplers are fundamental devices in integrated optics, enabling different functionalities such as power dividers, spot-size converters, coherent hybrids and fiber-chip coupling interfaces, to name a few. In this work we propose a new type of nanophotonic coupler based on sidewall grating (SIGRA) concept. SIGRAs have been used in the Bragg regime, for filtering applications, as well as in the sub-wavelength regime in multimode interference (MMI) couplers. However, the use of SIGRAs in the radiation regime has been very limited. Specifically, a coarse wavelength division multiplexer was proposed and experimentally validated. In this work we study the use of SIGRAs in the diffractive regime as a mean to couple the light between a silicon wire waveguide mode and a continuum of slab waveguide modes. We also propose an original technique for designing SIGRA based couplers, enabling the synthesis of arbitrary radiation field profile by Floquet- Bloch analysis of individual diffracting elements while substantially alleviating computational load. Results are further validated by 3D FDTD simulations which confirm that the radiated field profile closely matches the target design field.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Source time reversal (STR) method for linear elasticity

    Get PDF
    We study the problem of source reconstruction for a linear elasticity problem applied to seismicity induced by mining. We assume the source is written as a variable separable function f(x)g(t)\mathbf{f(x)}\>g(t) . We first present a simple proof a local decay result for elasticity in the case of homogeneous media. We then extend the source time reversal method, originally developed for acoustic waves, to an elastic system of waves. Additionally, we present a fast reconstruction implementation for large data sets. This is especially useful in the elastic case, in which the numerical cost is higher than in fluid acoustics. We complement this work with several 2D and 3D numerical experiments and an analysis of the resultsThis work was partially supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant No 644602 GEAGAM (Spain) and CONICYT, Chile - PIA/Concurso de Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal AFB170001. Additionally, the first author was supported by CONICYT Doctoral fellowship number (Chile), Fondecyt11161033 (Chile), ICMP09-015-F (Chile), and EQM140119. Jaime H. Ortega was partially supported by Fondecyt1111012 and 1171854 (Chile). Ángel Rodríguez-Rozas and David Pardo were partially funded by the Projects of the Spanish Ministry of Economy and Competitiveness with reference MTM2016-76329-R (AEI/FEDER, EU) and MTM2016-81697-ERC/AEI, the BCAM “Severo Ochoa” accreditation of excellence SEV-2017-0718, the Basque Government through the BERC 2018-2021 program, the Consolidated Research Group Grant IT649-13 on “Mathematical Modeling, Simulation, and Industrial Applications (M2SI)”. David Pardo has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777778

    A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body

    Full text link
    The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Tosio Kato says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body's dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, what seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid

    Adaptation of the generic PDE's results to the notion of prevalence

    Full text link
    Many generic results have been proved, especially concerning the qualitative behaviour of solutions of partial differential equations. Recently, a new notion of "almost always", the prevalence, has been developped for vectorial spaces. This notion is interesting since, for example, prevalence sets are equivalent to the full Lebesgue measure sets in finite dimensional spaces. The purpose of this article is to adapt the generic PDE's results to the notion of prevalence. In particular, we consider the cases where Sard-Smale theorems or arguments of analytic perturbations of the parameters are used

    Curved waveguide grating demultiplexer (CWG) with a flattened response via bimodal output waveguides

    Get PDF
    We demonstrate a compact wavelength demultiplexer for the silicon-on-insulator platform based on the curved waveguide grating (CWG) architecture. The proposed device uses bi- modal output waveguides to achieve a low-loss flattened spectral response. The device shows insertion loss as low as 1.2 dB and crosstalk below -20 dB.Universidad de Málaga; Ministerio de Educación, Cultura y Deporte (MECD) (FPU16/03401), Ministerio de Ciencia, Innovación y Universidades (MCIU) (PID2019-106747RBI00), Consejería de Economía, Conocimiento, Empresas y Universidad (CECEU) (UMA18-FEDERJA-219, P18-RT1453, P18-RT-793). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Light on Cut Chrysanthemum : Measurements and Simulation of Crop Growth and Yield

    Get PDF
    The effects of plant density and light intensity on crop growth and yield of cut chrysanthemum were investigated experimentally and simulated with a generic explanatory crop growth model (HORTISIM). In winter, supplementary light (HPS; 48 μmol m-2 s-1 PAR) increased total incident PAR with 24°whereas total dry matter production per m2 was increased with 45&Eth;The effect of supplementary light on plant dry and fresh mass, and number of flowers per plant at different plant densities (32, 48 or 64 m-2), was larger at lower densities. In summer, a linear relationship between cumulative dry mass production and cumulative intercepted PAR was observed in each of three shading treatments. However, the slope of this line (light use efficiency) decreased with increasing light level being 4.1 g MJ-1, 3.4 g MJ-1 and 2.7 g MJ-1 for 43°66 nd 100␕ight, respectively. HORTISIM could accurately predict crop growth and yield at most light conditions, with measured climatic data, initial plant mass and time course of leaf area index being model inputs. However, in summer at 100␕ight the model strongly overestimated dry mass production

    Subwavelength gratings for sensing and polarization management

    Get PDF
    Sub-wavelength grating (SWGs) structures are becoming important building blocks in planar waveguide photonic devices [1]. SWG structures have been successfully applied in the design of a range of devices with remarkable performance by using refractive index engineering and dispersion engineering techniques [2]. In this work we explore two new promising applications of these structures, namely in evanescent field waveguide sensing and polarization management. For the evanescent waveguide sensing devices, we show that sub- wavelength patterning of silicon wires can be used to control the delocalization of the waveguide mode and therefore enhance both bulk and surface sensitivities (Fig. 1). We will also discuss the implementation of subwavelength structures in efficient polarization splitter and rotator (PSR) devices [3]. PSR devices based on asymmetrical directional couplers typically exhibit stringent fabrication tolerances. We show that by implementing SWG structures in PSR design both the effective mode index and its derivatives with respect to critical dimensions can be controlled, which significantly improves tolerance to fabrication errors (Fig. 2).Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech

    Silicon-on-insulator polarization controller with relaxed fabrication tolerances

    Get PDF
    Polarization control is essential in applications ranging from optical communications to interferometric sensors. The implementation of in- tegrated polarization controllers is challenging as they require polariza- tion rotating waveguides with stringent fabrication tolerances. Here, we present a fully integrated polarization controller scheme that signi cantly relaxes the requirements on the rotating waveguides, alleviating fabri- cation tolerances. We analytically establish a technology-independent, easily measurable tolerance condition for the rotating waveguides. Po- larization control in the presence of waveguide width errors of 25% is shown through full vectorial simulation.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Implementation of a Markov Chain Monte Carlo method to inorganic aerosol modeling of observations from the MCMA-2003 campaign ? Part I: Model description and application to the La Merced site

    No full text
    International audienceThe equilibrium inorganic aerosol model ISORROPIA was embedded in a Markov Chain Monte Carlo algorithm to develop a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. The method directly incorporates measurement uncertainty, prior knowledge, and provides a formal framework to combine measurements of different quality. The method was applied to particle- and gas-phase precursor observations taken at La Merced during the Mexico City Metropolitan Area (MCMA) 2003 Field Campaign and served to discriminate between diverging gas-phase observations of ammonia and predict gas-phase concentrations of hydrochloric acid. The model reproduced observations of particle-phase ammonium, nitrate, and sulfate well. The most likely concentrations of ammonia were found to vary between 4 and 26 ppbv, while the range for nitric acid was 0.1 to 55 ppbv. During periods where the aerosol chloride observations were consistently above the detection limit, the model was able to reproduce the aerosol chloride observations well and predicted the most likely gas-phase hydrochloric acid concentration varied between 0.4 and 5 ppbv. Despite the high ammonia concentrations observed and predicted by the model, when the aerosols were assumed to be in the efflorescence branch they are predicted to be acidic (pH~3)
    corecore