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cUniversidad del Páıs Vasco (UPV/EHU), Leioa, Spain

dBasque Center for Applied Mathematics (BCAM), Bilbao, Spain
eIkerbasque, Bilbao, Spain

Abstract

We study the problem of source reconstruction for a linear elasticity problem applied to
seismicity induced by mining. We assume the source is written as a variable separable
function f(x)g(t). We first present a simple proof a local decay result for elasticity in the
case of homogeneous media. We then extend the source time reversal method, originally
developed for acoustic waves, to an elastic system of waves. Additionally, we present a
fast reconstruction implementation for large data sets. This is especially useful in the
elastic case, in which the numerical cost is higher than in fluid acoustics. We complement
this work with several 2D and 3D numerical experiments and an analysis of the results.
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1. Introduction

Seismicity is described by equations of classical continuum mechanics. There are two
different descriptions of motion and its mechanics: Lagrangian and Eulerian [1]. For this
work, and some others seismicity applications, it is preferable to consider the Lagrangian
description, which studies the displacement u(x, t) of the particle x at time t. Since5

particle x is invariant in time, we obtain its velocity and acceleration by computing the
first and second time derivatives of the displacement, respectively [1]. As there are no
systematic differences between seismicity and mining seismicity (or induced seismicity)
[2], it is valid to consider the same model for both seismic activities.

In this work, we are interested in applications to seismicity induced by mining. The10

understanding of seismic activity inside mines provides essential information to prevent
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accidents and improve the safety of miners. The main difference between seismicity
and induced seismicity is the distance that the wavefronts travel from the source to the
geophones, which in the case of induced seismicity is shorter than in seismicity. Due to
this, it becomes relevant to take into account the time profile of the source in the case of15

induced seismicity. We propose a source of the form f(x)g(t), where g is a scalar-valued
function with compact support. Although considering this rather general source produces
some difficulties in the reconstruction, it is physically more realistic than a traditional
Dirac delta source in time. The objective is then to describe and locate the term f(x)
by knowing the information provided by the geophones and g(t). Geophones measure20

the displacement velocity by transforming the velocity of waves into voltages [3].
The problems of source location and source reconstruction have been widely studied

in applied mathematics regarding their uniqueness, stability, and reconstruction. For
example, V. Isakov discussed in [4] source reconstructions methods for elliptic, parabolic,
and hyperbolic problems. There exist different techniques in inverse problems and control25

theory for solving these kinds of problems. To mention some of them, M. Yamamoto [5] in
1995 studied the problem of space-source reconstruction for the wave equation, when the
source is of the form s(x, t) = f(x)g(t), using exact boundary controllability and Volterra
integral equations and measuring the normal derivative on the boundary. G. Garcia et
al. [6] studied in 2013 a similar problem for the heat equation and reconstructed the30

space-term f(x) from observing the solution and its time derivative in some subdomain
O ⊂ Ω, where Ω ⊂ Rn is a nonempty open bounded domain. A. El Abadia and T.
Ha-Duong [7] studied in 2000 the inverse source problem for some elliptic equations
from boundary measurements. They proposed an algebraic method to carry out the
identifiability and also showed theoretical results. A. El Badia et al. [8] introduced on35

2000 numerical results for determining a source term in elliptic problems by using the
Hilbert Uniqueness Method (HUM).

In the case of wave propagation problems (including acoustics, elasticity, and electro-
magnetism), time reversal exploits a fundamental symmetry of waves [9]. M. Fink de-
veloped the time-reversal mirror as an extension of phase-conjugate mirrors [10], which40

consists of a receiver-emitter transducer device that first measures a signal, and then
returns it in reversed chronology. Time-reversal mirror has applications in several ar-
eas. For example, detection of tumors and kidney stones in medical imaging, detection
of defects in metals, and long-distance communication and mine detection in the ocean
[11].45

Time-reversal methods have also been applied for solving inverse source problems
for acoustic and elastic waves. H. Ammari introduced in [12] the basis for time-reversal 
imaging in the context of small anomalies on the conductivity for Dirac delta sources in 
time and space. We mention also the works of H. Ammari et al. [13] and J. Yoo et al.

50 [14] and their references for the state of the art for detecting small elastic anomalies.
In [15], he studies the problem of source reconstruction for the thermo-viscous model

considering an attenuating acoustic media. In [16], he shows a time-reversal technique
for solving inverse extended source1 problems in the acoustic case, when the source is the
derivative (in distributional sense) of a Dirac delta function in time and a smooth real-
valued function with smooth compact support in space. In [17], time-reversal techniques55

1Extended sources are those whose size is much larger than a wavelength [17].
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for imaging extended source detection in elastic and viscoelastic media are presented for 
a source given as the derivative of a Dirac delta function in time and a vector-valued 
function with compact support in space. The work of H. Ammari et al. [18] shows a 
reconstruction of the spatial support of noisy sources in elasticity.

In [19], a method called Source Time Reversal (STR) was proposed for reconstructing60

the space term of a source of the form f(x)g(t) for the acoustic wave equation. The work,
with applications to mining seismicity, takes advantage of the information provided by a
general time-source term g(t) to transform the original source problem into an synthetic
with initial conditions and without source, where the unknown f(x) now appears as
an initial condition for this new problem. Then, it aims to time-reverse the boundary65

information of the synthetic problem. Via a Volterra equation, the boundary information
needed to perform the time-reversal method is obtained from the boundary measurements
of the original source problem.

In the present work, we extend the STR method to the case of elasticity. This ex-
tension overcomes the difficulties encountered when considering a general time-source70

term. To derive this extension, we first introduce a local decay result for linear elas-
ticity in homogeneous media. We then introduce two reconstruction methods based on
different regularization terms. One of the regularizations delivers a fast reconstruction
method with low computational cost. This is especially useful for large data sets, as
those often appearing in elasticity. Additionally, Some 2D and 3D numerical examples75

are considered.
The rest of the paper is organized as follows. Section 2 describes the elasticity equa-

tion under different considerations: anisotropic, isotropic, homogeneous, and heteroge-
neous media. We also show some properties, behaviors, and characteristics of solutions
of acoustic and elastic equations. Section 3 extends the STR method to an elastic system80

of waves. We then propose two reconstruction methods: the STR with traditional regu-
larization and a fast STR with cut-off regularization. Section 4 describes two numerical
implementations of the STR method, one based on the finite difference method and the
other on the finite element method. In Section 5, we numerically analyze the STR with
traditional regularization via 2D and 3D synthetic examples. Section 6 analyzes numeri-85

cally the fast STR with cut-off regularization via more realistic 2D seismicity induced by
mining examples with added noise. The last section is devoted to conclusions and future
work.

2. Framework

In this section, we introduce some notation and review useful results of hyperbolic90

equations. We use bold letters to indicate vector-valued functions. Let u : Rn → R
and u : Rn → Rn be scalar-valued and vector-valued functions, respectively. Here,
in the context of elastic waves u = (u1, . . . , un) stands for the displacement field, and
ui : Rn → R with i ∈ {1, . . . , n} corresponds to the i-th component of the displacement.

We denote ∆u to the Laplace operator acting on a scalar field u. Then, the Laplacian95

of a vector field is defined as

∆u = (∆u1, . . . ,∆un).

The curl of a vector-valued function in R3 is defined as

curlu = (∂x1 , ∂x2 , ∂x3)× (u1, u2, u3) = (∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1),
3



whereas the curl operators for a vector-valued and scalar-valued functions in R2 are
respectively defined as

curlv u = ∂x1u2 − ∂x2u1 and curls u = (∂x2u,−∂x1u),

where we denote the curl with subscripts to differentiate both cases. Notice that curl :100

R3 → R3 in R3, curlv : R2 → R in R2, and curls : R → R2 in R2. Then, we have the
following known properties in 3D and 2D.

Remark 1. Let u : R3 → R3 be a vector-valued function and u : R3 → R a scalar-valued
function. Then:

1. curl∇u = 0.105

2. ∇ · curlu = 0.

3. curl curlu = ∇(∇ · u)−∆u.

Remark 2. Let u : R2 → R2 be a vector-valued function and u : R2 → R a scalar-valued
function. Then:

1. curlv∇u = 0.110

2. ∇ · curls u = 0.

3. curls curlv u = ∇(∇ · u)−∆u.

4. curlv curls u = ∆u.

The theory of elasticity consists of the description of stress, strain, and displacement
at each point of a deformable object [20]. The general model in linear elasticity is given115

by the equation of motion
ρ∂2
tu−∇ · σ(u) = F ,

where σ represents a second order tensor field called stress tensor [21]. In the isotropic
case, the stress tensor takes the particular form

σ(u) = µ
(
∇u+∇uT

)
+ λ(∇ · u)Id,

where µ and λ are the Lamé parameters [22]. In addition, when we consider the case of
homogeneous media, the tensors

σij(u) = λ∇ · u δij + 2µ εij(u)

and

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
are, respectively, the classical Cauchy and stress tensors typically defined in a homoge-
neous and isotropic elastic media. Then, in the last case, the equation of motion is given120

by
ρ∂2
tu− µ∆u− (µ+ λ)∇(∇ · u) = F . (1)

The solution u to linear elasticity is composed of two waves: the compressional and
the shear wave. These waves can be written in terms of space derivatives of solutions to
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acoustic problems. To do this, we consider the decomposition of the space of vector-
valued square integrable functions into a direct sum of divergence-free and curl-free125

spaces, called Helmholtz decomposition [23]. In other words, let u ∈ (L2(Rn))n be a
vector field. Then, there exist a vector-valued function ψ and a scalar-valued function φ
such that

u = udiv + ucurl ,

where udiv = curlψ and ucurl = ∇φ. Let us recall from Remark 1 and 2 that for the
cases n ∈ {2, 3}, we obtain ∇ · udiv = 0 and curlucurl = 0. We can find more general130

versions of this decomposition for different open sets in [24, 25].
In addition, it is easy to see by using Remarks 1 and 2 that problem (1) in 3D and

2D can be written respectively as

ρ∂2
tu− (2µ+ λ)∇(∇ · u) + µcurl curlu = F ,

ρ∂2
tu− (2µ+ λ)∇(∇ · u) + µcurls curlv u = F .

In the case of homogeneous media, these expressions allow us to relate solutions of135

linear elasticity with acoustic solutions via the following theorems.

Theorem 1 (Lamé’s Theorem 3D case [1]). Let u be the solution of the following problem
ρ∂2
tu(x, t)− Lµ,λu(x, t) = F (x, t), in R3 × (0, T ),

u(x, 0) = ∇p(x) + curl q(x),

∂tu(x, 0) = ∇r(x) + curl s(x),

where Lµ,λu = (2µ+ λ)∇(∇ · u)− µcurl curlu, F = ∇Φ + curl Ψ, with

∇ · s = ∇ · q = ∇ ·Ψ = 0.

Then, there exist functions φ and ψ such that140

u = ∇φ+ curlψ,

∇ ·ψ = 0,


∂2
t φ−

λ+ 2µ

ρ
∆φ =

Φ

ρ
, in R3 × (0, T ),

φ(x, 0) = p(x),

∂tφ(x, 0) = r(x),
∂2
tψ −

µ

ρ
∆ψ =

Ψ

ρ
, in R3 × (0, T ),

ψ(x, 0) = q(x),

∂tψ(x, 0) = s(x),

where ∇φ and curlψ are the P-wave and S-wave, respectively, components of u.
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Theorem 2 (Lamé’s Theorem 2D case [1]). Let u be the solution of the following problem145 
ρ∂2
tu(x, t)− Lµ,λu(x, t) = F (x, t), in R2 × (0, T ),

u(x, 0) = ∇p(x) + curls q(x),

∂tu(x, 0) = ∇r(x) + curls s(x),

where Lµ,λu = (2µ + λ)∇(∇ · u) − µcurls curlv u, F = ∇Φ + curls Ψ. Then, there exist
functions φ and ψ such that

u = ∇φ+ curls ψ,
∂2
t φ−

λ+ 2µ

ρ
∆φ =

Φ

ρ
, in R2 × (0, T ),

φ(x, 0) = p(x),

∂tφ(x, 0) = r(x),
150 

∂2
t ψ −

µ

ρ
∆ψ =

Ψ

ρ
, in R2 × (0, T ),

ψ(x, 0) = q(x),

∂tψ(x, 0) = s(x),

where ∇φ and curls ψ are the P-wave and S-wave components of u, respectively.

To apply a time reversal process to linear elasticity, it is necessary to obtain a local
energy decay type result. A classical result of B. R. Vainberg [26] establishes a decay
rate of the solution and all its derivatives for acoustic waves and large time under certain
requirements on the propagation speed, named non-trapping condition.155

Definition 1 (acoustic non-trapping condition [27]). Let c : Rn → R be a C∞(Rn)
function. We define the Hamiltonian H(x, ξ) = 1

2c
2(x)|ξ|2 and the following system

x′t = ∂H
∂ξ = ξc2(x),

ξ′t = −∂H∂x = − 1
2 |ξ|

2∇(c2(x)),

x|t=0 = x0,

ξ|t=0 = ξ0,

H(x0, ξ0) = H0.

(2)

Solutions of (2) are called bicharacteristics, and the projection of the x-components
into Rn of a bicharacteristic is called ray. We say that c(x) accomplishes the non-
trapping condition if all rays go to infinity when t→∞.160

Theorem 3 (Local decay for acoustic solution [27]). Let v be solution to the following
problem 

∂2
t v(x, t)− c2(x)∆v(x, t) = 0, in Rn × (0,∞),

v(x, 0) = ϕ(x),

∂tv(x, 0) = ψ(x),

(3)

where c(x) > c1 > 0 for all x ∈ Rn. Let us assume all the heterogeneities of the medium
and the initial conditions are confined to a bounded subset Ω ⊂ Rn. In addition, we
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assume c ∈ C∞(Rn) accomplishes the non-trapping condition. Then, there exists T0 > 0165

such that the solution to problem (3) verifies v ∈ C∞(Ω× (T0,∞)) and∣∣∣∣ ∂|α|v(x, t)

∂tα0∂xα1
1 · · · ∂x

αn
n

∣∣∣∣ ≤ Cη(t)
(
‖ϕ‖L2(Ω) + ‖ψ‖L2(Ω)

)
,

for all x ∈ Ω, for all t ≥ T0, and for all α = (α0, α1, . . . , αn) ∈ Nn+1, where C :=
C(Ω,α). Here

η(t) =

{
t1−n−α0 , for even n

e−δt, for odd n,

where δ is a constant depending on c(x).

Here, we employ the local decay of acoustic wave solutions given by Theorem 3 to170

establish a local decay result for linear elasticity.

Theorem 4. Let u be solution of the linear elasticity system in homogeneous media
ρutt(x, t)− Lµ,λu(x, t) = 0, in Rn × (0, T ),

u(x, 0) = ∇p(x) + curl q(x),

∂tu(x, 0) = ∇r(x) + curl s(x),

(4)

where q and s are vector-valued functions for n = 3 and scalar-valued functions for n = 2.
In addition, here curl q and curl s stand for curls q and curls s for n = 2. Let Ω ⊂ Rn be a
bounded set such that the supports of p, q, r, and s are contained in Ω. Let

√
(λ+ 2µ)/ρ,175 √

µ/ρ belong to C∞(Rn) such that supp(c∗ −
√

(λ+ 2µ)/ρ) ∪ supp(c∗∗ −
√
µ/ρ) ⊂ Ω

for some constants c∗ and c∗∗,
√

(λ+ 2µ)/ρ ≥ c? > 0 and
√
µ/ρ ≥ c?? > 0 for some

constants c? and c??, and
√

(λ+ 2µ)/ρ,
√
µ/ρ accomplish the non-trapping condition.

Then, for any α = (α, . . . , αn) there exists T̃ such that we have the following esti-
mates:180

In the 3D case,∣∣∣∣∂|α|u(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣ ≤ Ce−δt (‖p‖L2(Ω) + ‖r‖L2(Ω) + ‖q‖(L2(Ω))3 + ‖s‖(L2(Ω))3
)
,

∀ t > T̃ ,

for all x ∈ Ω, where C := C(Ω,α, n), and δ := δ(µ, λ, ρ).
In the 2D case,∣∣∣∣∂|α|u(x, t)

∂α0
t ∂α1

x1 ∂
α2
x2

∣∣∣∣ ≤ Ct1−n−α0
(
‖p‖L2(Ω) + ‖r‖L2(Ω) + ‖q‖L2(Ω) + ‖s‖L2(Ω)

)
,

∀ t > T̃ ,

for all x ∈ Ω, where C := C(Ω,α, n).

Proof. We construct the local decay estimate for the elastic waves problem. To do this,185

the elastic wave is decomposed in terms of the P-wave and the S-wave, and we use the
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local decay result for acoustic waves. Here, we only provide the proof for the case n = 3;
the case n = 2 is analogous.

Let u be a solution to (4). Then, by Theorem 1, there exist functions φ and ψ such
that190

u(x, t) = ∇φ(x, t) + curlψ(x, t), (5)

where φ solves the problem
∂2
t φ(x, t)− 2µ+ λ

ρ
∆φ(x, t) = 0, in R3 × (0,∞),

φ(x, 0) = p(x),

∂tφ(x, 0) = r(x),

and ψ solves the problem
∂2
tψ(x, t)− µ

ρ
∆ψ(x, t) = 0, in R3 × (0,∞),

ψ(x, 0) = q(x),

∂tψ(x, 0) = s(x).

Using Theorem 3, we observe that there exist Ti, i ∈ {0, 1, 2, 3} such that∣∣∣∣ ∂|α|φ(x, t)

∂tα0∂xα1
1 ∂xα2

2 ∂xα3
3

∣∣∣∣ ≤ C0e
−δ1t (‖p‖L2 + ‖r‖L2) , ∀ t ≥ T0,∣∣∣∣ ∂|α|ψi(x, t)

∂tα0∂xα1
1 ∂xα2

2 ∂xα3
3

∣∣∣∣ ≤ Cie−δ2t (‖qi‖L2(Ω) + ‖si‖L2(Ω)

)
, ∀ t ≥ Ti, i ∈ {1, 2, 3},

for all x ∈ Ω and for all α = (α0, . . . , α3) ∈ N4, where Ck := Ck(Ω,α), with k ∈
{0, 1, 2, 3}, δ1 := δ1(ρ, µ, λ), and δ2 := δ2(ρ, µ).

From (5), we obtain the components of u in terms of φ and ψ195

u1 = ∂x1
φ+ ∂x2

ψ3 − ∂x3
ψ2,

u2 = ∂x2
φ+ ∂x3

ψ1 − ∂x1
ψ3,

u3 = ∂x3
φ+ ∂x1

ψ2 − ∂x2
ψ1.

Let α+l := (αi+ δl,i)i=0,...,n, where δl,i is the Kronecker delta. Then, for all i ∈ {1, 2, 3}∣∣∣∣∂|α|ui(x, t)∂α0
t · · · ∂

α3
x3

∣∣∣∣ ≤ ∣∣∣∣ ∂|α|+1φ(x, t)

∂xi∂
α0
t · · · ∂

α3
x3

∣∣∣∣+

∣∣∣∣∂|α|+1ψj(x, t)

∂xk
∂α0
t · · · ∂

α3
x3

∣∣∣∣+

∣∣∣∣∂|α|+1ψk(x, t)

∂xj∂
α0
t · · · ∂

α3
x3

∣∣∣∣
≤C̃1e

−δ1t
(
‖p‖L2(Ω) + ‖r‖L2(Ω)

)
+ C̃2e

−δ2t
(
‖qj‖L2(Ω) + ‖sj‖L2(Ω)

)
+ C̃3e

−δ2t
(
‖qk‖L2(Ω) + ‖sk‖L2(Ω)

)
,

where j 6= k, with j, k ∈ {1, 2, 3} \ {i}, δ1 := δ1(µ, λ, ρ), δ2 := δ2(µ, ρ), C̃1 := C̃1(Ω,α+i),

C̃2 := C̃2(Ω,α+j), and C̃3 := C̃3(Ω,α+k). Let us define δ := minl∈{1,2} δl. From here,
we use C to denote different constants depending on Ω and α (more explicitly depending
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on Ω, α+1, α+2, and α+3). Then,200 ∣∣∣∣∂|α|ui(x, t)∂α0
t · · · ∂

α3
x3

∣∣∣∣ ≤C(Ω,α)e−δt
(
‖p‖L2(Ω) + ‖r‖L2(Ω) + ‖qj‖L2(Ω) + ‖sj‖L2(Ω)

+‖qk‖L2(Ω) + ‖sk‖L2(Ω)

)
≤C(Ω,α)e−δt

(
‖p‖L2(Ω) + ‖r‖L2(Ω) +

3∑
l=1

(
‖ql‖L2(Ω) + ‖sl‖L2(Ω)

))
≤C(Ω,α)e−δt

(
‖p‖L2(Ω) + ‖r‖L2(Ω) +

√
3
(
‖q‖(L2(Ω))3 + ‖s‖(L2(Ω))3

))
≤C(Ω,α, n)e−δt

(
‖p‖L2(Ω) + ‖r‖L2(Ω) + ‖q‖(L2(Ω))3 + ‖s‖(L2(Ω))3

)
.

Note that constant C depends on n in this last estimate. On the other hand,∣∣∣∣∂|α|u(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣ =

√∣∣∣∣∂|α|u1(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣2 +

∣∣∣∣∂|α|u2(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣2 +

∣∣∣∣∂|α|u3(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣2
≤
∣∣∣∣∂|α|u1(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣+

∣∣∣∣∂|α|u2(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣+

∣∣∣∣∂|α|u3(x, t)

∂α0
t · · · ∂

α3
x3

∣∣∣∣
≤C(Ω,α, n)e−δt

(
‖p‖L2(Ω) + ‖r‖L2(Ω) + ‖q‖(L2(Ω))3 + ‖s‖(L2(Ω))3

)
.

Then,∣∣∣∣ ∂|α|u(x, t)

∂α0
t ∂α1

x1 ∂
α2
x2 ∂

α3
x3

∣∣∣∣ ≤ Ce−δt (‖p‖L2(Ω) + ‖r‖L2(Ω) + ‖q‖(L2(Ω))3 + ‖s‖(L2(Ω))3
)
,

for all t > T̃ , x ∈ Ω and for all α = (α0, α1, α2, α3) ∈ N4, where T̃ = max{T0, . . . , T3}.
This proves the theorem in the case n = 3.

The same proof remains valid in the 2D case by considering ψ, q, and s as scalar205

valued functions, so we obtain∣∣∣∣∂|α|ui(x, t)∂α0
t ∂α1

x1 ∂
α2
x2

∣∣∣∣ ≤ Ct1−n−α0
(
‖p‖L2(Ω) + ‖q‖L2(Ω) + ‖r‖L2(Ω) + ‖s‖L2(Ω)

)
,

for all t > T̃ , x ∈ Ω, and for all α = (α0, α1, α2) ∈ N3, where T̃ = max{T0, T1}. This
completes the proof.

3. Source time reversal in elasticity

STR [19] method modifies the classical Time-Reversal Mirrors (TRM) [28] for recon-210

structing a space-source term of the form s(x, t) = f(x)g(t), where g is a real-valued
function with compact support. Taking advantage of the information provided by the
time-source term g(t), the original source problem is related with a non-source wave
problem in which the space-source term of the original problem appears as an initial
condition and the boundaries information between the two problems are related by a215

Volterra integral equation of the first kind. Then, it is possible to apply the TRM idea
over this new non-source initial condition problem by solving the integral equation to

9



obtain its boundary information and chronologically reverse the boundary information
of the non-source wave problem.

Although acoustics provide a good first approximation of compressional and shear220

waves, linear elasticity offers a better approximation to the ground motion. In [29], we
can see the main limitations of considering the acoustic model for seismic events. Since
STR method is oriented to solve problems in induced seismicity, in here we extend the
original formulation for acoustic waves [19] to systems of elastic waves.

In this section, we select a model for tremors by considering compressional and shear225

waves propagating in an infinite medium (without boundary). Assuming our seismic
events are governed by the elastic equation in an isotropic media, we use the Lagra-
gian description [1] to define the displacement u(x, t) of the particle x at time t in an
homogeneous and isotropic elastic media

ρ∂2
tu(x, t)− Lµ,λu(x, t) = f(x)g(t), in Rn × (0, T ),

u(x, 0) = 0,

∂tu(x, 0) = 0,

(6)

where Lµ,λu = µ∆u+ (µ+ λ)∇(∇ · u) and n ∈ {2, 3}.230

Let us consider a bounded set Ω ⊂ Rn such that the support of f(x) is contained in
Ω, and the geophones are located on ∂Ω. The boundary information will be given by the
displacement velocities ∂tu(y, t) for y ∈ ∂Ω and for all t ∈ (0, T ). Then, we define the
inverse problem: given the measurement displacement velocities {mu(y, t) := ∂tu(y, t) :
(y, t) ∈ ∂Ω × (0, T )} and the time-distribution of the source {g(t) : t ∈ (0, T )}, find235

the space-source term f(x). We introduce the operator of measurement displacement
velocities as

Λ(f , g) := ∂tu|∂Ω×(0,T ).

We define an initial condition problem by following the procedure in [19]
ρ∂2
t v(x, t)− Lµ,λv(x, t) = 0, in Rn × (0, T ),

v(x, 0) = 0,

∂tv(x, 0) = ρ−1f(x),

(7)

where the solutions to (6) and (7) are related via an integral equation by using Duhamel’s
principle [30]240

u(x, t) =

∫ t

0

v(x, t− τ)g(τ) dt. (8)

We are interested in obtaining the boundary measurements from problem (7) in order
to reverse them chronologically and recover f(x). To do this, we define the operator of
measurements

Λ0f := ∂tv|∂Ω×(0,T ).

Notice that it is possible to rewrite problem (7) inside Ω in terms of the displacement
velocity, the boundary information and its conditions at time t = T . Then, the solution245

10



to problem (9) is the restriction of ∂tv(x, t) inside Ω× (0, T ].
ρ∂2
tw(x, t)− Lµ,λw(x, t) = 0, in Ω× (0, T ),

w(x, T ) = ∂tv(x, T ),

∂tw(x, T ) = ∂2
t v(x, T ),

w(y, t) = mv(y, t), on ∂Ω× (0, T ),

(9)

where mv := Λ0f .
To obtain the solution to problem (9) at time t = 0 is equivalent to back propagate

the displacement velocity waves in problem (7). This procedure gives us an exact recon-
struction of the initial velocity to problem (7), i.e. w(x, 0) = ρ−1f(x). Unfortunately,250

the final conditions ∂tv(x, T ) and ∂2
t v(x, T ) for all x ∈ Ω are often unavailable in a

practical setting. To overcome this issue, we notice from Theorem 4 that not only each
component of the solution of (7) decays, but also its derivatives inside the bounded set Ω
for large T . Furthermore, the decay profile is polynomial in 2D and exponential in 3D.
Thus, the final conditions ∂tv(x, T ) and ∂2

t v(x, T ) to problem (9) can be approximated255

by zero for T large enough.
Let us assume that problem (7) satisfies the conditions of Theorem 4 and let T−ε > T̃

for a fixed ε > 0. Then, we define the following problem
ρ∂2
t w̃ − Lµ,λw̃ = 0, in Ω× (0, T ),

w̃(x, T ) = 0,

∂tw̃(x, T ) = 0,

w̃(y, t) = mv(y, t)φε(t), on ∂Ω× (0, T ),

(10)

where φε is a smooth cut-off function such that φε(t) = 1 for all t ∈ (0, T −ε) and φε = 0
for all t ∈ (T,∞). By solving problem (10) at time t = 0, we obtain an approximate260

reconstruction of ρ−1f(x). This reconstruction depends mainly on T and the dimension
of the problem n.

From the physical problem (6), we measure the boundary information denoted by
the set {mu(y, t) = ∂tu(y, t) : (y, t) ∈ ∂Ω × (0, T )}. To solve problem (10), it is
necessary to obtain the boundary information from the synthetic problem (7) given by265

the set {mv(y, t) = ∂tv(y, t) : (y, t) ∈ ∂Ω× (0, T )}. Then, it only remains to obtain the
measurements mv(y, ·) from mu(y, ·) for each y ∈ ∂Ω. From identity (8), this problem
reduces to solve the following integral equation

mu(y, t) =

∫ t

0

mv(y, t− τ)g(τ) dt, (11)

where t ∈ (0, T ) for all y ∈ ∂Ω.
Let A0(mu, g) = mv be the operator that solves problem (11). Then, we need to270

solve the following problem to obtain a reconstruction to the space-source term f(x)
ρ∂2
t w̃ − Lµ,λw̃ = 0, in Ω× (0, T ),

w̃(x, T ) = 0,

∂tw̃(x, T ) = 0,

w̃(y, t) = ρA0(mu, g)(y, t)φε(t), on ∂Ω× (0, T ).

(12)

11



The Laplace transform is a standard tool to solve integral equations of the first kind
when the kernel is given by a convolution. A limitation of this technique is that the
inverse Laplace transform is known only for some rather simple functions and it may
also be challenging to find numerically [31].275

To overcome the above limitation, we propose to solve (11) numerically by using
Fourier transform. Unfortunately, a direct resolution gives us the expression

F−1

(
F(mu)

F(g)

)
,

which may become singular for some t and it is numerically unstable. To avoid the
previous stability problems, we present two regularization methods for approximating
the solution to (11).280

STR with traditional regularization. We define

A(mu, g) := F−1

(
F(mu)F(g)

|F(g)|2 + c0

)
, (13)

where c0 is a small positive regularization constant. Then, we replace the operator A0

with A in problem (12) to find a reconstruction of the space-source term f(x).
With the above regularization, high frequencies appear due to the division by F (g).

This regularization method was considered in [19]. The addition of the constant c0 makes285

the deconvolution stable and avoids divisions by zero but does not eliminate high frequen-
cies. Solving such high frequencies require the use of fine meshes in numerical simulations.
For large problems, the method may eventually become prohibitively expensive.

Fast STR with cut-off regularization. In this second regularization method, we define
function Θ as290

Θ(ξ) =


F(g)(ξ)

|F(g)(ξ)|2
, if |F(g)(ξ)| ≥ c1 max

ξ
|F(g)(ξ)|

0, if |F(g)(ξ)| < c1 max
ξ
|F (g)(ξ)|,

where c1 ∈ (0, 1) is a constant that regulates excitations of high frequencies and avoids
divisions by zero. Then, we replace the operator A0 with

F−1(F(mu)Θ) (14)

in problem (12) to find a reconstruction of the source-space term f(x). This regular-
ization method allows the source reconstruction in coarse meshes by eliminating higher
frequencies.295

In summary, the STR method consists of a transformation of the boundary mea-
surements, which are given by the displacement velocities. To transform the boundary
measurements, we propose two regularization methods depending on the computational
requirements. The first one reverses in time the measurements processed by operator
A to recover the space-source term. The second regularization method eliminates high300

frequencies of the processed signals to be reversed in time. This second approach allows
12



for reconstructing sources in more realistic cases when the computational requirements
are larger. Figure 1 shows the difference in the processed signal frequencies between the
two regularization methods for different regularization constants. Both procedures will
give us a reconstruction of f(x) for any time-source term g(t).305

(a) Traditional STR, c0 = 0.0 (b) Fast STR, c1 = 0.0

(c) Traditional STR, c0 = 0.01 (d) Fast STR, c1 = 0.01

(e) Traditional STR, c0 = 0.1 (f) Fast STR, c1 = 0.1

Figure 1: First component of a measurement processed with both STR regularization methods for
different regularization constant values.

4. Implementation of the STR method

We consider two simulation methods: a Finite Difference Method (FDM) and a Finite
Element Method (FEM). In the absence of analytical solutions, we use both schemes to
compare our results and validate the robustness of the method.

The implementation considered for the FDM is straightforward and based on the 2D 
scheme presented in [32]. Then, the 2D system (u, v) governed by

ρ
∂2u

∂t2
= (2µ + λ)

∂

∂x

(
∂u
∂x

+
∂v

∂y
+ µ

∂

∂y

∂u

∂y
− ∂v

∂x

) ( )
,

ρ
∂2v

∂t2
= µ

∂

∂x

( 
∂v
∂x
− ∂u

∂y

)
+ (2µ + λ)

∂

∂y

(
∂u
∂x

+
∂v

∂y

)
,
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310 is discretized as follows:

Ul+1(i, j) = 2Ul(i, j) − Ul−1(i, j) +
(
vp∆t
h

)2

[Ul(i + 1, j) − 2Ul(i, j) + Ul(i − 1, j)]

+
h

)2 (
1 −

vs
vp

(
vp∆t 

)
+ Vl(i − 1, j − 1)]/4 +

h vp

[Vl(i + 1, j + 1) − Vl(i + 1, j − 1) − Vl(i − 1, j + 1) (
vp∆t 

)2 ( 
vs 
)2

[Ul(i, j + 1) − 2Ul(i, j) + Ul(i, j − 1)] ,

Vl+1(i, j) = 2Vl(i, j) − Vl−1(i, j) +
(
vp∆t
h

)2

[Vl(i, j + 1) − 2Vl(i, j) + Vl(i, j − 1)]

+
h

1 −
vs
vp

(
vp∆t 

)2 ( )
+ Ul(i − 1, j − 1)]/4 +

h vp

[Ul(i + 1, j + 1) − Ul(i + 1, j − 1) − Ul(i − 1, j + 1) (
vp∆t 

)2 ( 
vs 
)2

[Vl(i + 1, j) − 2Vl(i, j) + Vl(i − 1, j)] ,

where (Ul+1 − 2Ul + Ul−1)/(∆t)
2 is the finite difference discretization for ∂2u/∂t2 at

m√time t = l, ∆t is the ti√e discretization step, h is the space discretization step, vp =(2µ + λ)/ρ, and vs = µ/ρ.
Additionally, in here we extend this scheme to the 3D case, where the system (u, v, w)

is given by

ρ
∂2u

∂t2
= (2µ + λ)

∂

∂x

(
∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
+ µ

∂

∂y

(
∂u
∂y
− ∂v

∂x

)
+ µ

∂

∂z

(
∂u
∂z
− ∂w

∂x

)
ρ
∂2v

∂t2
= µ

∂

∂x

( 
∂v
∂x
− ∂u

∂y

)
+ (2µ + λ)

∂

∂y

(
∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
+ µ

∂

∂z

(
∂v
∂z
− ∂w

∂y

)
ρ
∂2w

∂t2
= µ

∂

∂x

(
∂w
∂x
− ∂u

∂z

)
+ µ

∂

∂y

(
∂w
∂y
− ∂v

∂z

)
+ (2µ + λ)

∂

∂z

(
∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
315

For the forward problem, we consider a large enough computational domain to ensure
that waves measured by the geophones are free from the effects of the computational
boundary. To reverse the measurements processed by the STR method, we consider a
smaller computational domain equal to Ω, where the geophones are in the computational
boundary of the domain. Finally, the processed signal is introduced as the Dirichlet320

condition of the backward problem.
For the FEM, we implemented a first-order absorbing boundary condition over the

domain boundary Γ ⊂ Ω:

ρ
∂2u

∂t2
−∇ · σ(u) = g(t) (0.5∇+ 0.5∇×) δx0

, in Ω, (17a)

ρB
∂u

∂t
+ σ(u) · n = 0, on Γ, (17b)
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where the external force g(t) (0.5∇+ 0.5∇×) δx0 represents a point source in space (δ)
located at x0 that generates both P- and S-waves, g(t) is a source time function based
on a Ricker wavelet with peak frequency fp (typically 10 [Hz]), and n is the exterior
unit normal to the boundary Γ. Note that more point sources may be considered by
simply adding similar terms to the right-hand-side at different space locations. The
symmetric, positive-definite matrix B appearing in the absorbing boundary condition of
equation (17b) is defined as

B :=

(
cPn

2
1 + cSn

2
2 (cP − cS)n1n2

(cP − cS)n1n2 cPn
2
1 + cSn

2
2

)
,

where n1 and n2 are the normal components in the first and second directions, respec-
tively, and cP and cS are the compressional and the shear wave velocities, respectively,325

with cP =
√

λ+2µ
ρ and cS =

√
µ
ρ .

The weak formulation of problem (17) reads as follows: ∀t ∈ (0, T ], find u = u(t) ∈ U
such that ∫

Ω

ρ
∂2u

∂t2
·wdΩ +

∫
Ω

λ∇ · u∇ ·w dΩ +

∫
Ω

2µ

2∑
i,j=1

εi,j(u)εi,j(w)dΩ

+

∫
Γ

ρ

(
B
∂u

∂t

)
·wdΓ =

∫
Ω

g(t) (0.5∇+ 0.5∇×) δx0
·w dΩ,

for all test functions w ∈ W , where the Sobolev trial space U and test space W are
defined as

U = {u ∈ (H1(Ω))2},

and

W = {w ∈ (H1(Ω))2 : w = 0 on Γ}.

We consider the Leap-frog scheme for the second-order time derivative, whereas for the 
first-order one we apply central differences. For the space discretization, we employ high-
order hierarchical basis functions for the space discretization for both the finite-
dimensional test and trial spaces Vh and Wh. Therefore, we obtain a numerical scheme that 
provides second-order accuracy in time, exhibits an arbitrary convergence order in space 
(typically, we fix the polynomial order p to be p = 2 or p = 3), and it conserves the energy 
(see [33]) provided that a certain CFL condition is satisfied. This CFL condition imposes a 
constrained relationship between the magnitudes of the time step ∆t and the
characteristic element size h, the later selected according to fp. For a regular mesh over 
a rectangular domain, this CFL condition becomes

∆t <
2h√
αd

,

where d is the dimension of the domain Ω (two in our case) and α is a constant that
depends only on the space discretization method.

For the backward problem, a similar discretization holds. The only difference is that
now we replace equation (17a) by its corresponding homogeneous problem and equa-330

tion (17b) by a Dirichlet boundary condition on Γ using the transformed data registered
by the geophones on the forward problem, as described in the previous section.
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5. Numerical experiments of STR with traditional regularization

In this section, we employ the FDM. We consider a source supported in a subdomain
Ω = (−3, 3) × (−3, 3) for the 2D case, and Ω = (−3, 3) × (−3, 3) × (−3, 3) for the 3D335

case. In the following experiments, we consider regular grids composed of squares (2D) or 
cubes (3D). Let us denote by ∂Ωh the nodes of the numeric mesh over ∂Ω. The geophones 
will be located at each nodal point of ∂Ωh for the experiments with measure-ments over the 
entire boundary and at each point of a set Γh ⊂ ∂Ωh for experiments

340 with partial data. The measurements are processed with the operator defined in (13). In
Subsections 5.1, 5.2, and 5.4, we consider the regularization constant c0 = 0.01 for the
standard STR. Additionally, in the last subsection, we compare both STR regularization
methods (traditional and fast) for data in the entire boundary and for partial boundary
information.

We consider the following elastic parameters: ρ = 1 [Kg/m3], µ = 1 [Pa], λ = 1 [Pa].345

Thus, the speed of the P-wave is
√

2 [m/s] and that of the S-wave is 1 [m/s]. We generate
elastic waves by considering different sources f(x)g(t). In most of these experiments, we
consider three time-source terms given by

g1(t) =
gs(t)

‖gs(t)‖
, g2(t) =


7t, t ∈ (0, 1/7)

1, t ∈ (1/7, 2/7)

3− 7t, t ∈ (2/7, 3/7)

, and g3(t) = 1χ(0.01,0.4),

where gs(t) = exp(1− 122(t− 0.2)2). Figure 2 displays these functions.

(a) g1(t) (b) g2(t) (c) g3(t)

Figure 2: Time-source terms.

5.1. Two-dimensional phantom reconstruction350

The scope of this experiment is to analyze the effect of the shape of the time source
on the recovered reconstruction results for 2D simulations in an ideal case. We refer
to an ideal case as an experiment without noise, with geophones located at all mesh
nodes along the entire ∂Ω, and a final time T long enough to measure the wavefronts.
To do this, we present 2D reconstructions of the known Shepp-Logan phantom [34] as355

the space-source term, see Figure 3a. Here, we generate the elastic waves using three
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(a) Exact phantom |fph(x)| (b) Recons. with g1(t); error: 23.2%

(c) Recons. with g2(t); error: 13.7% (d) Recons. with g3(t); error: 4.7%

Figure 3: Exact and reconstructions of |fph(x)| for waves generated with fph(x)gi(t). Relative error in
L2-norm.
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different sources fph(x)gi(t) i ∈ {1, 2, 3}. For this experiment, the final time T is 23 [s]
and the space and time steps are h = 0.05 [m] and dt = 0.005 [s], respectively.

Figures 3b, 3c, and 3d show the reconstructions of the space-source term for waves
generated with sources fph(x)gi(t), i ∈ {1, 2, 3}. As it occurred with the results of the360

experiments perfomed in [19] for acoustic waves, the discontinuous time-source term g3(t)
provides better reconstructions than the other terms.

5.2. Three-dimensional reconstructions with complete data

Here, we show the relative error of reconstruction in L2-norm for 3D simulations in
the ideal case (without noise, with geophones located over the entire ∂Ω, and with T365

being long enough). We simulate 3D elastic waves with a source composed by a smooth
space-source term

fsm(x) =
f1(x)

‖f1(x)‖
+ 0.7

f2(x)

‖f2(x)‖
, (18)

where f1(x) = exp
(
1− 22

(
(x1 + 0.5)2 + (x2 − 0.5)2 + x2

3

))
and

f2(x) = exp
(
1− 22

(
(x1 − 0.5)2 + (x2 + 0.5)2 + x2

3

))
(see Figure 4a). The three time-

source terms are the ones considered in Subsection 5.1. The value of the parameters370

considered here are: h = 0.05 [m], dt = 0.01 [s], and T = 7 [s]. Due to local decay
behavior of 3D waves (see Theorem 4) the final time T needed for reconstruction in the
3D case is shorter than in the 2D one.

(a) Exact space term |fsm(x)| (b) Recons. with g1(t); error: 0.5%

(c) Recons. with g2(t); error: 0.6% (d) Recons. with g3(t); error: 0.6%

Figure 4: Exact and reconstruction of |fsm(x)| for waves generated by fsm(x)gi(t). Relative error in
L2-norm.
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Figures 4b, 4c, and 4d show the reconstructions for the different waves generated with
sources fsm(x)gi(t) for i ∈ {1, 2, 3}. The relative errors are lower than those observed in375

the 2D case for all gi(t). This is due to the faster local decay rate of 3D waves. In this
case (homogeneous media and 3D waves), the Huygens’ principle is valid, and we could
expect to recover the space-source term exactly. The only two sources of error are the
regularization constant c0 and the numerical discretization. In the next experiment, we
assess numerically the percent of error induced by the regularization constant c0.380

5.3. Error decay analysis

The aim of this numerical experiment is to show numerically the error induced by
the regularization constant c0. To do this, we compare the relative error decay in L2-
norm between the classical TRM method and the STR with traditional regularization
for different c0 constants in 2D and 3D cases. The parameters for the finite difference385

are: h = 0.05 [m], dt = 0.01 [s], and T ∈ [3, 7].
To make the TRM and STR methods comparable, we consider a time-source term

acting for a short period of time. Namely, g4(t) = 1χ[0, 0.1]. The space-source term
selected in this experiment is fsm(x) in (18) and its projection to R2.

For the classical time reversal method, we consider the problem of reconstructing the390

initial displacement given by the following inverse problem: find fsm(x) given
ρ∂2
tu− Lµ,λu = 0, in Rn × (0, T ),

u(x, 0) = fsm(x),

∂tu(x, 0) = 0,

(19)

knowing the measurements m(y, t) = u(y, t) for all (y, t) in ∂Ω× (0, T ).
For the STR method, we consider the problem of reconstructing the source: given

g4(t) for all t ∈ (0, T ) and the measurements m(y, t) = ∂tu(y, t) for all (y, t) in ∂Ω ×
(0, T ), find fsm(x) such that395 

ρ∂2
tu− Lµ,λu = fsm(x)g4(t), in Rn × (0, T ),

u(x, 0) = 0,

∂tu(x, 0) = 0.

(20)

Problems (19) and (20) are different. However, since the time-source term g4 acts
only for a short period of time in relation with the total time T , we obtain similar wave
propagation and errors for both problems, as illustrated in Figure 5. In this way, we can
compare the intrinsic error of the TRM and the percent of error due to the STR method.
Figure 5 also analyzes the effect of regularization constant c0. In all cases, we observe400

that such constant has negligible effects on the accuracy of the resulting reconstruction.

5.4. Tree-dimensional reconstruction with partial data and noise

We now analyze the case when only partial boundary data are available and the
influence of noise on the partial data. To do this, we present reconstructions of the405

space-source term fsm(x) (see (18)) when the measurements are obtained in a subset of
the domain boundary. We consider three cases. In the first one, geophones are located on
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(a) 2D case (b) 3D case

Figure 5: Error decay comparison between TRM and STR for different values of c0.

four faces of the cube [−3, 3]× [−3, 3]× [−3, 3]; in the second one, geophones are located
on two faces of the cube; and in the third case, geophones are located only along one face 

410 of the cube. Then, we repeat the last experiment (geophones located along one face) but
considering noisy measurements. To pollute the measurements, we added 5% and 10% of 
white Gaussian noise. The geophones are located at each node of the numeric mesh over 
Γh, possibly only on some faces of ∂Ω. The value of the finite difference discretization 
parameters are: h = 0.05 [m], dt = 0.01 [s], and T = 7 [s].

Figure 6 shows the exact source and the respective reconstructions when clean mea-415

surements are acquired in four, two, and one faces of the domain boundary. The ampli-
tude of the reconstructed sources is related with the amount of information available on 
the boundary, then the scale of the reconstructions decrease as the number of measured 
faces decrease. Although we obtain a smaller scale in the reconstructions with partial

420 boundary information, the STR method with traditional regularization properly localizes
the space-source term and reconstructs it with lower resolution.

In Figure 7, we see the reconstruction of the source fsm(x), when noisy measurements
are acquired on one face of the cube. Subfigures 7a and 7b show the reconstruction
with 5% and 10% of noise, respectively. Here, we observe that the noise influence is 425 

proportionally scaled as the source reconstruction, and the method is still able to locate
the source.

5.5. Comparison of two STR regularization methods: traditional vs fast cut-off

Here, we compare both STR regularization methods for reconstructions performed
with data information on the entire boundary and with partial boundary data. To do

430 this, we consider 2D reconstructions of the phantom fph(x) from measurements of 
wavesgenerated with fph(x)g3(t) (see Figures 3a and 2c). For each set of reconstructions the 

measurements are obtained on the entire boundary, on two faces, and on one face of the 
boundary. For this experiment, the final time T is 23 [s] and the space and time steps are h 
= 0.05 [m] and dt = 0.005 [s], respectively.
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(a) Exact (b) Measurements on four faces

(c) Measurements on two faces (d) Measurements on one face

Figure 6: Exact and reconstruction of |fsm(x)| for waves generated by fsm(x)g1(t).

(a) 5% white Gaussian noise (b) 10% white Gaussian noise

Figure 7: Reconstruction of |fsm(x)| for waves generated by fsm(x)g1(t). Measurements on one face
with white Gaussian noise.
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(a) 4 faces; c0 = 0.180; error 7.8% (b) 4 faces; c1 = 0.180; error 64.9%

(c) 2 faces; c0 = 0.180; error 50.9% (d) 2 faces; c1 = 0.180; error 74.7%

(e) 1 face; c0 = 0.180; error 76.5% (f) 1 face; c1 = 0.180; error 87.1%

Figure 8: Comparison of STR with traditional regularization (c0 = 0.180) and fast reconstructions with
cut-off regularization (c1 = 0.180). Reconstruction of |fph(x)| with partial data for waves generated
with fph(x)g3(t). Relative error in L2-norm.

22



(a) 4 faces; c0 = 0.048; error 5.6% (b) 4 faces; c1 = 0.048; error 61.6%

(c) 2 faces; c0 = 0.048; error 50.5% (d) 2 faces; c1 = 0.048; error 72.5%

(e) 1 face; c0 = 0.048; error 76.4% (f) 1 face; c1 = 0.048; error 86.2%

Figure 9: Comparison of STR with traditional regularization (c0 = 0.048) and fast reconstructions with
cut-off regularization (c1 = 0.048). Reconstruction of |fph(x)| with partial data for waves generated
with fph(x)g3(t). Relative error in L2-norm.
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Let fmeas be the maximum measured frequency and fSTR be the maximum frequency435

of the signal processed with the STR method. For this comparison, we consider the
regularization constant c1 = 0.180, which gives us that fSTR ≤ fmeas for the fast STR
with cut-off regularization. Additionally, we consider the case c1 = 0.048, which gives
us that fSTR ≤ 2fmeas. To compare the methods, we consider the same regularization
constants values for the STR with traditional regularization, but in this case the method440

induces higher frequencies.
Figures 8 and 9 show the reconstruction images for the different boundary information

considered. The subfigures are intentionally on different scale for a better understanding
of the results. The STR with traditional regularization presents a lower error percent
in all cases and identifies better the edges of the phantom. Although the fast STR with445

cut-off regularization loses some “details” in the reconstruction when fSTR ≤ fmeas (and
fSTR ≤ 2fmeas), the methodology still identifies the correct location of the source and
its main structure.

6. Numerical experiments of fast STR with cut-off regularization

450

In this section, we consider a seismicity induced by mining example in 2D using a 
FEM with a second-order polynomial space discretization (i.e. p = 2). We select a
regular square grid, and the geophones are located at each nodal point of ∂Ωh. For a
more realistic implementation, we pollute P- and S-waves synthetic measurements with 

455 additive Gaussian noise. To reconstruct the source, we implement the fast STR method
by solving problem (12) and replacing operator A0 with the transformed data given by
equation (14).

For these experiments, we generate a microseismic event considering three point
sources acting simultaneously and modulated by a Ricker wavelet on time. These sources
are located at points (170,−135), (0,−10), and (140, 160), where the units are now460

in meters. Geophones are distributed ten meters away along the boundary of the set
Ω = (−300, 300)×(−300, 300). We consider ρ = 2500 [Kg/m3], µ = 9.6334225×109 [Pa],
λ = 9.633155× 109 [Pa]. Thus, vp =

√
(2µ+ λ)/ρ = 3400 [m/s] and vs =

√
µ/ρ = 1963

[m/s], so vp/vs ≈
√

3. The case when vp/vs is
√

3 is considered close to the real conditions
for much of the Earth [2].465

In addition, we set the cut-off constant c1 = 0.01 to compute the fast STR method. For 
the computational mesh, we select h = 10 [m], dt = 0.001 [s], and T = 0.6 [s].

Figure 10 shows the results of the source reconstructions where the measurements are
acquired in presence of additive noise. In all cases, we observe superior reconstruction
results.470

7. Conclusions

We have developed a space-source term reconstruction method in linear elasticity for
sources of the form f(x)g(t). The proposed method is based on the STR methodol-
ogy introduced in [19] for acoustic waves. Additionally, we describe two regularization
methods: a traditional one, and a fast cut-off regularization.475
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(a) without noise (b) noise: 10% (c) noise: 30%

Figure 10: Source reconstruction of seismicity induced by mining experiment from measurements with
different percent of additive noise. The white crosses represent the exact position of the original point
source.

The STR method has its basis on a property that allows waves to be reversed in time
and the Duhamel’s principle to define an auxiliary problem without source and with
final conditions. Additionally, the STR method requires a non-trapping condition to
ensure the wavefronts measurements and a local decay result to approximate by zero the
final conditions of the auxiliary problem given by the Duhamel’s principle. A Volterra480

integral equation of the first kind with a convolution kernel gives the relation between the
boundary measurements of the physical and the auxiliary problems. To reverse in time
the boundary information in the auxiliary problem, it is necessary to solve the Volterra
equation. Here, we have developed the two regularization methods mentioned above to
solve such Volterra equation.485

We have performed numerical experiments in 2D and 3D to test the reconstruction
method with both regularization approaches. The STR method with traditional regular-
ization considers a regularization constant c0 to avoid divisions by zero. This method-
ology works well with partial data but excites some high-frequencies that require a fine
mesh in space to backpropagate them. The fast STR method with cut-off regularization490

introduces a cut-off constant c1 as a low-pass filter to avoid the higher frequencies in the
processed measurements. The fast method works well under noise measurements and
with coarser meshes but presents some reconstruction limitations in the case with partial
data. Additionally, 3D simulations exhibit a better local decay rate, which is traduced
into better source reconstructions at shorter times.495

In a future work, we shall extend the STR methodology to heterogeneous elastic
materials. Heterogeneous media allows a more accurate description of the ground and
a better representation of the different layers that compose the Earth. Since the TRM
method is suitable also for heterogeneous media (see [35]), the STR methodology should
also be applicable if the media accomplishes a non-trapping condition. Additionally, we500

plan to study a theoretical estimate of the reconstruction error in the elastic case.
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