1,451 research outputs found

    Bagging ensemble selection for regression

    Get PDF
    Bagging ensemble selection (BES) is a relatively new ensemble learning strategy. The strategy can be seen as an ensemble of the ensemble selection from libraries of models (ES) strategy. Previous experimental results on binary classification problems have shown that using random trees as base classifiers, BES-OOB (the most successful variant of BES) is competitive with (and in many cases, superior to) other ensemble learning strategies, for instance, the original ES algorithm, stacking with linear regression, random forests or boosting. Motivated by the promising results in classification, this paper examines the predictive performance of the BES-OOB strategy for regression problems. Our results show that the BES-OOB strategy outperforms Stochastic Gradient Boosting and Bagging when using regression trees as the base learners. Our results also suggest that the advantage of using a diverse model library becomes clear when the model library size is relatively large. We also present encouraging results indicating that the non negative least squares algorithm is a viable approach for pruning an ensemble of ensembles

    External Operators and Anomalous Dimensions in Soft-Collinear Effective Theory

    Full text link
    It has recently been argued that soft-collinear effective theory for processes involving both soft and collinear partons contains a new soft-collinear mode, which can communicate between the soft and collinear sectors of the theory. The formalism incorporating the corresponding fields into the effective Lagrangian is extended to include external current and four-quark operators relevant to weak interactions. An explicit calculation of the anomalous dimensions of these operators reveals that soft-collinear modes are needed for correctly describing the ultraviolet behavior of the effective theory.Comment: 15 pages, 2 figure

    Soft, collinear and non-relativistic modes in radiative decays of very heavy quarkonium

    Get PDF
    We analyze the end-point region of the photon spectrum in semi-inclusive radiative decays of very heavy quarkonium (m alpha_s^2 >> Lambda_QCD). We discuss the interplay of the scales arising in the Soft-Collinear Effective Theory, m, m(1-z)^{1/2} and m(1-z) for z close to 1, with the scales of heavy quarkonium systems in the weak coupling regime, m, m alpha_s and m alpha_s^2. For 1-z \sim alpha_s^2 only collinear and (ultra)soft modes are seen to be relevant, but the recently discovered soft-collinear modes show up for 1-z << alpha_s^2. The S- and P-wave octet shape functions are calculated. When they are included in the analysis of the photon spectrum of the Upsilon (1S) system, the agreement with data in the end-point region becomes excellent. The NRQCD matrix elements and are also obtained.Comment: Revtex, 11 pages, 6 figures. Minor improvements and references added. Journal versio

    Resumming the color-octet contribution to e+ e- -> J/psi + X

    Full text link
    Recent observations of the spectrum of J/psi produced in e+ e- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that leading order color-octet mechanisms predict an enhancement of the cross section for J/psi with maximal energy that is not observed in the data. However, in this region of phase space large perturbative corrections (Sudakov logarithms) as well as enhanced nonperturbative effects are important. In this paper we use the newly developed Soft-Collinear Effective Theory (SCET) to systematically include these effects. We find that these corrections significantly broaden the color-octet contribution to the J/psi spectrum. Our calculation employs a one-stage renormalization group evolution rather than the two-stage evolution used in previous SCET calculations. We give a simple argument for why the two methods yield identical results to lowest order in the SCET power counting.Comment: 27 pages, 7 figure

    Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order

    Full text link
    We compute the relation between the pole quark mass and the minimally subtracted quark mass in the framework of QCD applying dimensional reduction as a regularization scheme. Special emphasis is put on the evanescent couplings and the renormalization of the epsilon-scalar mass. As a by-product we obtain the three-loop on-shell renormalization constants Zm(OS) and Z2(OS) in dimensional regularization and thus provide the first independent check of the analytical results computed several years ago.Comment: 22 page

    Efficacy of six months neuromuscular exercise on lumbar movement variability : a randomized controlled trial

    Get PDF
    Introduction: Lumbar movement variability during heavy, repetitive work may be a protective mechanism to diminish the progression of lumbar disorders and maintain neuromuscular functional integrity. The effect of neuromuscular exercise (NME) on the variability of lumbar movement is still to be determined. Methods: A randomised controlled trial was conducted on a population of nursing personnel with subacute LBP. Following randomization, the NME group participants completed an NME program of six months duration. The participants in the control group only attended the assessment sessions. The outcomes were assessed at: baseline; after six months intervention; 12 months. The primary outcome was lumbar movement variability based on angular displacement and velocity. Results: A positive treatment effect on lumbar movement variability was seen after six months of NME intervention. Angular displacement improved, and angular velocity remained constant. At the 12-month follow up, however, the effect faded in the NME group. Lumbar movement variability worsened in the control group over all time periods. Conclusion: NME may improve lumbar movement variability in the short term and may indicate improved neuromuscular functional integrity. The design of an optimal NME program to achieve long-term improvement in lumbar movement variability is a subject worthy of further research

    Hadronic Charmed Meson Decays Involving Tensor Mesons

    Full text link
    Charmed meson decays into a pseudoscalar meson P and a tensor meson T are studied. The charm to tensor meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the Cabibbo-allowed decay Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+ is dominated by the W-annihilation contribution and has the largest branching ratio in DTPD\to TP decays. We argue that the Cabibbo-suppressed mode D+f2(1270)π+D^+\to f_2(1270)\pi^+ should be suppressed by one order of magnitude relative to Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+. When the finite width effect of the tensor resonances is taken into account, the decay rate of DTPD\to TP is generally enhanced by a factor of 232\sim 3. Except for Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+, the predicted branching ratios of DTPD\to TP decays are in general too small by one to two orders of magnitude compared to experiment. However, it is very unlikely that the DTD\to T transition form factors can be enhanced by a factor of 353\sim 5 within the ISGW quark model to account for the discrepancy between theory and experiment. As many of the current data are still preliminary and lack sufficient statistic significance, more accurate measurements are needed to pin down the issue.Comment: 11 page

    Three-Loop Chromomagnetic Interaction in HQET

    Full text link
    We compute the three-loop QCD corrections to the quark chromomagnetic moment and thus obtain the matching coefficient and the anomalous dimension of the chromomagnetic interaction in HQET. As a byproduct we obtain the three-loop corrections to the quark anomalous magnetic moment.Comment: 22 page

    Some Enhancements of Decision Tree Bagging

    Full text link

    Fermionic Corrections to the Three-Loop Matching Coefficient of the Vector Current

    Full text link
    In this paper we consider the matching coefficient of the vector current between Quantum Chromodynamics (QCD) and Non-Relativistic QCD (NRQCD) to three-loop order in perturbation theory. We evaluate the fermionic corrections containing a closed massless fermion loop. The results are building blocks both for the bottom and top quark system at threshold. We explain in detail the methods used for the evaluation of the Feynman diagrams, classify the occurring master integrals and provide results for the latter. The numerical effects are significant. They have the tendency to improve the behaviour of the perturbative series -- both for the bottom and top quark system.Comment: 21 page
    corecore