Abstract

Charmed meson decays into a pseudoscalar meson P and a tensor meson T are studied. The charm to tensor meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the Cabibbo-allowed decay Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+ is dominated by the W-annihilation contribution and has the largest branching ratio in DTPD\to TP decays. We argue that the Cabibbo-suppressed mode D+f2(1270)π+D^+\to f_2(1270)\pi^+ should be suppressed by one order of magnitude relative to Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+. When the finite width effect of the tensor resonances is taken into account, the decay rate of DTPD\to TP is generally enhanced by a factor of 232\sim 3. Except for Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+, the predicted branching ratios of DTPD\to TP decays are in general too small by one to two orders of magnitude compared to experiment. However, it is very unlikely that the DTD\to T transition form factors can be enhanced by a factor of 353\sim 5 within the ISGW quark model to account for the discrepancy between theory and experiment. As many of the current data are still preliminary and lack sufficient statistic significance, more accurate measurements are needed to pin down the issue.Comment: 11 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019