1,266 research outputs found

    Three-Dimensional Engineered Bone from Bone Marrow Stromal Cells and Their Autogenous Extracellular Matrix

    Full text link
    Most bone tissue engineering research uses porous three-dimensional (3D) scaffolds for cell seeding. In this work, scaffold-less 3D bone-like tissues were engineered from rat bone marrow stromal cells (BMSCs) and their autogenous extracellular matrix (ECM). The BMSCs were cultured on a 2D substrate in medium that induced osteogenic differentiation. After reaching confluence and producing a sufficient amount of their own ECM, the cells contracted their tissue monolayer around two constraint points, forming scaffold-less cylindrical engineered bone-like constructs (EBCs). The EBCs exhibited alizarin red staining for mineralization and alkaline phosphatase activity and contained type I collagen. The EBCs developed a periosteum characterized by fibroblasts and unmineralized collagen on the periphery of the construct. Tensile tests revealed that the EBCs in culture had a tangent modulus of 7.5+/-0.5MPa at 7 days post-3D construct formation and 29+/-9MPa at 6 weeks after construct formation. Implantation of the EBCs into rats 7 days after construct formation resulted in further bone development and vascularization. Tissue explants collected at 4 weeks contained all three cell types found in native bone: osteoblasts, osteocytes, and osteoclasts. The resulting engineered tissues are the first 3D bone tissues developed without the use of exogenous scaffolding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78137/1/ten.tea.2007.0140.pd

    First fossil-leaf floras from Brunei Darussalam show dipterocarp dominance in Borneo by the Pliocene.

    Get PDF
    The Malay Archipelago is one of the most biodiverse regions on Earth, but it suffers high extinction risks due to severe anthropogenic pressures. Paleobotanical knowledge provides baselines for the conservation of living analogs and improved understanding of vegetation, biogeography, and paleoenvironments through time. The Malesian bioregion is well studied palynologically, but there have been very few investigations of Cenozoic paleobotany (plant macrofossils) in a century or more. We report the first paleobotanical survey of Brunei Darussalam, a sultanate on the north coast of Borneo that still preserves the majority of its extraordinarily diverse, old-growth tropical rainforests. We discovered abundant compression floras dominated by angiosperm leaves at two sites of probable Pliocene age: Berakas Beach, in the Liang Formation, and Kampong Lugu, in an undescribed stratigraphic unit. Both sites also yielded rich palynofloral assemblages from the macrofossil-bearing beds, indicating lowland fern-dominated swamp (Berakas Beach) and mangrove swamp (Kampong Lugu) depositional environments. Fern spores from at least nine families dominate both palynological assemblages, along with abundant fungal and freshwater algal remains, rare marine microplankton, at least four mangrove genera, and a diverse rainforest tree and liana contribution (at least 19 families) with scarce pollen of Dipterocarpaceae, today's dominant regional life form. Compressed leaves and rare reproductive material represent influx to the depocenters from the adjacent coastal rainforests. Although only about 40% of specimens preserve informative details, we can distinguish 23 leaf and two reproductive morphotypes among the two sites. Dipterocarps are by far the most abundant group in both compression assemblages, providing rare, localized evidence for dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene. The dipterocarp fossils include winged Shorea fruits, at least two species of plicate Dipterocarpus leaves, and very common Dryobalanops leaves. We attribute additional leaf taxa to Rhamnaceae (Ziziphus), Melastomataceae, and Araceae (Rhaphidophora), all rare or new fossil records for the region. The dipterocarp leaf dominance contrasts sharply with the family's <1% representation in the palynofloras from the same strata. This result directly demonstrates that dipterocarp pollen is prone to strong taphonomic filtering and underscores the importance of macrofossils for quantifying the timing of the dipterocarps' rise to dominance in the region. Our work shows that complex coastal rainforests dominated by dipterocarps, adjacent to swamps and mangroves and otherwise similar to modern ecosystems, have existed in Borneo for at least 4-5 million years. Our findings add historical impetus for the conservation of these gravely imperiled and extremely biodiverse ecosystems

    Liver transplantation for biliary atresia

    Get PDF
    Orthotopic liver transplantation was performed 15 months to 20 years ago in 126 recipients, all of whom were under 18 years of age. Eighty-six of these pediatric recipients were treated before 1980 with azathioprine (or eyclophosphamide) and prednisone, to which antilymphocyte globulin (ALG) usually was added. One-year patient survival was 40%. In the last 40 cases, the new drug cyclosporine has been given with low doses of steroids. The one-year patient survival increased to 65%. Both in the pre-cyclosporine era and more recently, the survival of patients with biliary atresia has been lower than in the next largest category of patients, namely, those with liver-based inborn metabolic errors. The difficulty of operation in patients with biliary atresia has been greater than in recipients with other diagnoses, partly because of previous operations such as portoenterostomy (Kasai procedure). Hepatic portoenterostomy, worthwhile as it is, has posed technical difficulties for eventual liver transplantation, particularly when complicated Roux limb techniques or venting procedures have been applied. In our total experience the longest survival after liver replacement in a child whose original diagnosis was biliary atresia is 132/3 years. © 1984 Société Internationale de Chirurgie

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.

    Isolation and analysis of genes specifically expressed during basidiomatal development in Antrodia cinnamomea by subtractive PCR and cDNA microarray

    Get PDF
    cDNAs specifically expressed at the basidiome stage were isolated by using PCR-selected cDNA subtraction in order to study gene regulation during porous-hymenium basidiomatal formation in Antrodia cinnamomea. BLASTX results suggested that most of the expressed sequence tags (52.4-69.5%) had no significant protein homology to genes from other published living things. cDNAs particularly expressed at different growing conditions were identified using cDNA microarray analysis. Reverse transcriptase PCR analyses confirmed that the clone putative to P-type ATPase, various cytochrome P450s and some unknown genes were abundant at natural basidiomes while endoglucanase was abundant at the tissue from artificial medium

    Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis

    Get PDF
    Our objective was to identify whether rare genetic variation in amyotrophic lateral sclerosis (ALS) candidate survival genes modifies ALS survival. Candidate genes were selected based on evidence for modifying ALS survival. Each tail of the extreme 1.5% of survival was selected from the UK MND DNA Bank and all samples available underwent whole genome sequencing. A replication set from the Netherlands was used for validation. Sequences of candidate survival genes were extracted and variants passing quality control with a minor allele frequency ≤0.05 were selected for association testing. Analysis was by burden testing using SKAT. Candidate survival genes UNC13A, KIFAP3, and EPHA4 were tested for association in a UK sample comprising 25 short survivors and 25 long survivors. Results showed that only SNVs in UNC13A were associated with survival (p = 6.57 × 10−3). SNV rs10419420:G > A was found exclusively in long survivors (3/25) and rs4808092:G > A exclusively in short survivors (4/25). These findings were not replicated in a Dutch sample. In conclusion, population specific rare variants of UNC13A may modulate survival in ALS

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Telomere length is greater in ALS than in controls: a whole genome sequencing study

    Get PDF
    BACKGROUND: Amyotrophic lateral sclerosis is a neurodegenerative disease of motor neurons resulting in progressive paralysis and death, typically within 3-5 years. Although the heritability of ALS is about 60%, only about 11% is explained by common gene variants, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication and shorten naturally with age. Gender and age are risk factors for ALS and also associated with telomere length. We therefore investigated telomere length in ALS. METHODS: We estimated telomere length by applying a bioinformatics analysis to whole genome sequence data of leukocyte-derived DNA from people with ALS and age and gender-matched matched controls in a UK population. We tested the association of telomere length with ALS and ALS survival. RESULTS: There were 1241 people with ALS and 335 controls. The median age for ALS was 62.5 years and for controls, 60.1 years, with a male-female ratio of 62:38. Accounting for age and sex, there was a 9% increase of telomere length in ALS compared to matched controls. Those with longer telomeres had a 16% increase in median survival. Of nine SNPs associated with telomere length, two were also associated with ALS: rs8105767 near the ZNF208 gene (p = 1.29 × 10-4) and rs6772228 (p = 0.001), which is in an intron for the PXK gene. CONCLUSIONS: Longer telomeres in leukocyte-derived DNA are associated with ALS, and with increased survival in those with ALS

    Entangled-Photon Generation from Parametric Down-Conversion in Media with Inhomogeneous Nonlinearity

    Full text link
    We develop and experimentally verify a theory of Type-II spontaneous parametric down-conversion (SPDC) in media with inhomogeneous distributions of second-order nonlinearity. As a special case, we explore interference effects from SPDC generated in a cascade of two bulk crystals separated by an air gap. The polarization quantum-interference pattern is found to vary strongly with the spacing between the two crystals. This is found to be a cooperative effect due to two mechanisms: the chromatic dispersion of the medium separating the crystals and spatiotemporal effects which arise from the inclusion of transverse wave vectors. These effects provide two concomitant avenues for controlling the quantum state generated in SPDC. We expect these results to be of interest for the development of quantum technologies and the generation of SPDC in periodically varying nonlinear materials.Comment: submitted to Physical Review
    corecore