RESEARCH LETTER

Isolation and analysis of genes specifically expressed during basidiomatal development in *Antrodia cinnamomea* by subtractive PCR and cDNA microarray

Fang-Hua Chu¹, Yi-Ru Lee¹, Shu-Jen Chou², Tun-Tschu Chang³ & Jei-Fu Shaw^{2,4}

¹School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan; ²Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, Taiwan; ³Division on Forest Protection, Taiwan Forestry Research Institute, Taipei, Taiwan; and ⁴Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung, Taiwan

Correspondence: Jei-Fu Shaw, Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung, Taiwan. Tel.: +886 2 27899590 ext. 260; fax: +886 2 27827954; e-mail: boplshaw@gate.sinica.edu.tw

Received 2 August 2007; accepted 28 November 2007. First published online 23 January 2008.

DOI:10.1111/j.1574-6968.2008.01052.x

Editor: Geoffrey Gadd

Keywords

Antrodia cinnamomea; basidiomatal formation; subtractive PCR; cDNA microarray; differential expression.

Introduction

Antrodia cinnamomea (T.T. Chang & W.N. Chou) (formerly A. camphorata) is a resupinate to effused-reflexed basidiomataycete with porous hymenium that is parasitic in the inner cavity of the endemic species Cinnamomum kanehirai Hay (Chang & Chou, 2004). Antrodia cinnamomea forms a traditional Chinese medicine and is well known under its Chinese name 'Chang-chih' in Taiwan. Recent studies have found that it possesses a wide range of biological functions, such as antioxidative activity (Hseu et al., 2002; Hsiao et al., 2003; Song & Yen, 2003; Shen et al., 2006; Huang et al., 2007), vasorelaxation (Wang et al., 2003), anti-inflammatory activity (Shen et al., 2004; Hseu et al., 2005; Chen et al., 2007), antitumor (Liu et al., 2004; Nakamura et al., 2004) and antihepatitis effects (Lee et al., 2002; Lu et al., 2007), hepatoprotective activity (Han et al., 2006) and antiangiogenic activity (Cheng et al., 2005). Antrodia cinnamomea grows very slowly in the wild is very slow, and it is thus difficult to cultivate in the greenhouse. As a result, the transfer from vegetative growth to basidiomatal formation

Abstract

cDNAs specifically expressed at the basidiome stage were isolated by using PCRselected cDNA subtraction in order to study gene regulation during poroushymenium basidiomatal formation in *Antrodia cinnamomea*. BLASTX results suggested that most of the expressed sequence tags (52.4–69.5%) had no significant protein homology to genes from other published living things. cDNAs particularly expressed at different growing conditions were identified using cDNA microarray analysis. Reverse transcriptase PCR analyses confirmed that the clone putative to P-type ATPase, various cytochrome P450s and some unknown genes were abundant at natural basidiomes while endoglucanase was abundant at the tissue from artificial medium.

is an important stage in both basic and applied fields of mycological research.

To gain global insight into the process of fruit body development, an expressed sequence tag (EST) analysis was used for Agaricus bisporus (Ospina-Giraldo et al., 2000) and Pleurotus ostreatus (Lee et al., 2002). In addition, suppressive subtractive hybridization (SSH) and differential display were also used for Ophiostoma piceae (Dogra & Breuil, 2004), P. ostreatus (Sunagawa & Magae, 2005) and Flammulina velutipes (Yamada et al., 2006) to identity the genes differentially expressed during fruit body development. SSH utilizes PCR to provide rapid comparisons of the expression of mRNA from different samples and also to show the relative difference in the concentration of these molecules. Essentially, this technique removes common transcripts between two experimental samples while maintaining the uniqueness of those transcripts. This method not only reduces the number of highly abundant cDNAs in the library, it can also maximize opportunities to identify those low-abundance genes that may have played critical roles in the experimental samples of interest (Morse et al., 2004). Thus, SSH is a simple and efficient method that can provide specific targeted genes among different samples.

The complexity of basidiomatal formation and biosynthesis of active components suggest that a large number of genes are involved. Differentiation of sexual fruit bodies from vegetative mycelia is an interesting process in basidiomatavcetes from both the scientific and economic points of view. In particular, A. cinnamomea possesses a poroushymenium basidiome without stipe. Although many mycologists have put much effort into identification of gene expression of cell regulation during fruit body formation, porous-hymenium basidiomatal formation and biosynthesis of active components at the molecular level have not yet been clarified. In order to identify genes that are differentially expressed in various sources to an experimental stimulus, we used SSH to identify well-expressed genes. Furthermore, genes obtained were arrayed and probed with cDNA libraries, and later confirmed by reverse transcriptase (RT)-PCR analysis from different cultures in this study.

Materials and methods

Strains and culture conditions

Antrodia cinnamomea strain TFRIB 479, obtained from rotten wood of *C. kanehirai* at Dawu and Taitung, was identified in the present study. The cultures were maintained as reported by Chang & Chou (2004). The natural basidiomes were obtained directly from the rotten wood. Liquid-cultured mycelia (AM), solid-cultured mycelia (AL), solid-cultured basidiomes (AF) and natural basidiomes (AT) were frozen in liquid nitrogen and stored at - 80 °C until use.

Isolation of total RNA and mRNA

Total RNA of each tissue was prepared according to the method described by Chang *et al.* (1993) as modified by Chen *et al.* (2004). For PCR-selected DNA subtraction, mRNA was purified from total RNA using an Oligotex mRNA Mini Kit (Qiagen, Hilden, Germany).

cDNA library construction

Three SSHs were performed using a Clontech kit according to the manufacturer's instructions. cDNA from liquidcultured mycelia was used as a tester and the cDNA from natural basidiomes was used as a driver. The SSH library used was M-T; by contrast, the cDNA from natural basidiomes used as a tester was T-M. In addition, the cDNA from solid-cultured basidiomes was used as a tester and the cDNA from liquid-cultured mycelia was used as a driver for the F-M SSH library. cDNAs were digested with RsaI and ligated to different adapters. Two rounds of hybridization and PCR amplification were processed to normalize and enrich the differentially expressed cDNAs. Products of the secondary PCR were cloned into the pGEM-T Easy vector system (Promega, Madison) following the protocol recommended for overnight ligation. The ligation mixture was transformed into High Efficiency DH5 α Competent cells (Hopegen, Taichung, Taiwan) and then plated onto LB-ampicillin plates containing isopropyl β -D-1-thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolylbeta-D-galactopyranoside (X-gal).

DNA sequencing

After having cDNA library plated onto Luria–Bertani (LB) media plates, the transformed white colonies were transferred into test tubes containing 5 mL LB–ampicilin medium. Plasmid DNA was isolated from overnight cultures using the Plasmid Miniprep Purification Kit (GeneMark, Taichung, Taiwan). Sequencing was performed with an ABI 377 automatic sequencer (Perkin Elmer, Foster) using T7 sequencing primer.

Sequence analysis

Nucleotide sequences were excluded if they were <100 bp and the remaining sequences were subjected to removal of vector sequences the CHROMASPRO program (Technelysium Pty Ltd, Tewantin, Australia). Individual ESTs were assembled into contigs using thr CONTIGEXPRESS program within the Vector NTI Suite 8 (Invitrogen, Carlsbad) with parameters optimized for ESTs rather than genomic clones. The cDNA sequences were compared against nonredundant (nr) protein sequence databases at the National Center for Biotechnology Information (NCBI) using the BLASTX algorithm (Altschul et al., 1997). E-value results obtained from the BLASTX search were categorized as follows: $\leq 10^{-10}$ represented significant homology and grouped according to putative function as a value $>10^{-10}$ implied no hit. A unique set with significant matches was annotated based on their most similar functions following the general rules from the Functional Catalogue by the Munich Information Center for Protein Sequences (MIPS) (www.mips.biochem.mpg.de/proj/ yeast/catalogues/funcat/index.html) and with the aid of the Gene Ontology Consortium (www.geneontology.org).

cDNA microarray preparation and analysis

The cDNA microarray was prepared according to Lin & Wu (2004). PCR products from each EST were arrayed from a 384-well plate onto CMTGAPS2-coated glass slides (Corning, New York) using an OmniGrid 100 microarrayer (GeneMachines, San Carlos, CA) according to the manufacturer's instructions. cDNA from the 18S rRNA gene of *A. cinnamomea* was also printed as an internal control. Total

© 2008 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved

Table 1	. F	rimer	sequences
---------	-----	-------	-----------

Gene name	Forward (5'–3')	Backward (5′–3′)		
P-type ATPase	CTTGGACCCGACGATAAATCCT	TATTCTGTATCTGCAGCCTCCC		
Cytochrome P450-1	TACACAATATACTAAAGCGCCC	GACGAAACAAACCGAGAATACC		
Cytochrome P450-2	TTCTGCCGGTGATACATTAGTG	ACGATCTGATATGGACATTCAC		
Prolin iminopeptidase	CAATCAAGCAATTCCATGCGAC	CCGTGCATAGAACATGAGTGTG		
β-Transducin protein	ACACTACTCTAGCTATCCTCGA	ACATCATCTCATAGATAGGCCG		
Glucan 1,4-α-maltohexaosidase	CAGGAGTGCTATGATGACAGAG	ATGTAACAACCTGACTGTACCC		
Endoglucanase	ATCGAGTTATTCTTCCGCCGAG	ACAATTGCCCCGTTTTCATTCC		
Unknown protein-1	AACTACCTGAACGCATACCCTG	CAAGGAGAGTCTGTGTGAAGGT		
Unknown protein-2	AGACAAGGGTGAGAGGACGCTACACGAT	CCGACCTGCTCAACGTCTTCGATATATGC		
Unknown protein-3	CTCATACAACCACTCACATCACAAC	ACCGTTTCATGCGTAATAGGATTG		

RNA prepared from different sources was reversetranscribed and used as probes for expression profile analysis. The RNA was extracted according to Chang *et al.* (1993). The methods used for fluorescent probe preparation and hybridization were as described at http://www.botany. sinica.edu.tw/microarray/protocols.htm. In order to analyze cDNA microarrays, data files were imported to SMD, ASCC (http://www.bitora.sinica.edu.tw:7777/smd/MicroArray/SMD/) and GeneSpring 6.1 (Silicon Genetics, Redwood, CA) for further analysis. 'Default Computed Normalization' was applied for data normalization for SMD.

RT-PCR analysis

In order to detect differential expression by RT-PCR, total RNA was reverse-transcribed into first-strand cDNA following the protocol for SMART cDNA synthesis using the SMART cDNA library construction kit (Clontech, Mountain View). One microgram of total RNA was incubated at 42 °C for 1 h with 200 U of superscriptTM II reverse transcriptase in a 20-µL reaction mixture. Then, 0.3 µg cDNA of the firststrand cDNA products from each sample was used for PCR amplification to detect the transcripts. Twenty-five cycles of PCR were run under the following conditions: 1 min at 94 °C, 30 s at 58 °C and 30 s at 72 °C. The internal control was analyzed by a pair of primers, RT-18Sn (5'-ACTGT-GAAACTGCGAATGGCTC-3') and RT-18Sc (5'-GACTTG CCCTCCAATTGTTCCTC-3'), specific for the 18S rRNA gene of A. cinnamomea. Primers for the other genes are listed in Table 1. The RT-PCR products were detected with a UV transilluminator after undergoing 1.2% agarose gel electrophoresis and staining with ethidium bromide.

Results

Construction of the subtracted cDNA libraries

After eliminating vectors and unreadable sequences, the clones were submitted to dbEST (GenBank accession nos. EV472086–EV473050). The nucleotide sequences were excluded if they were < 100 bp, and a total of 945 high-quality

clones were subjected to analysis. In total, 313 cDNA clones were obtained after applying subtractive hybridization via the M-T library. These clones were candidates for transcripts specific to or up-regulated for the M library. After sequence assembly, 111 ESTs were singletons, whereas the other 202 ESTs clustered into 39 contigs. Subtractive hybridization of the T-M and F-M libraries produced 370 and 262 cDNA clones, respectively. These clones were candidates for transcripts specific to or up-regulated for basidiomes. After sequence assembly, there were 192 singletons and 59 contigs in the T-M subtractive library, and 185 singletons and 31 contigs in the F-M subtractive library. These subtractive cDNA libraries of *A. cinnamomea* had insert sizes of 0.1–0.8 kb.

Functional classification of ESTs

The ESTs obtained were compared with the nr (all nonredundant GenBank CDS translations+PDB+Swissprot+ PIR+PRF) database using the BLASTX algorithm. The database sequence matches were classified as either a hit (E-value $\leq 10^{-10}$) or no hit (E-value $> 10^{-10}$) (Chen *et al.*, 2004). In subtractive hybridization of the M-T library, a BLASTX search revealed that 164 (52.4%) ESTs showed no significant similarity to protein sequences described in the nr database. There were 231 (62.4%) and 182 (69.5%) ESTs in the T-M and F-M libraries without significant similarity to protein sequences described in the nr database. Except for ESTs for unknown function and no hit, the total expressed transcripts of these cDNA libraries are listed in Table 1. The database-matched ESTs were classified based on their putative function and were divided into seven different categories based on their cellular roles according to the MIPS FunCat scheme. In the mycelia library, the ESTs encoding endoglucanase were the most abundant. In addition, a group of genes associated with heat shock response were also abundant. However, P-type ATPase was the most abundant in natural basidiomes. Furthermore, various kinds of cytochrome P450s were also found in subtractive hybridization of the T-M library.

Differential screening of various subtracted cDNA libraries

In order to recognize the relative level of these ESTs, these clones were analyzed using a cDNA microarray. Liquidcultured mycelia labeled with Cys3, solid-cultured mycelia, solid-cultured basidiomes and natural basidiomes labeled with Cys5 were used. Each slide was hybridized with two probes, resulting in each labeled liquid-cultured mycelia coupled to each solid-cultured mycelia, solid-cultured basidiomes or natural basidiomes. Summarizing these three hybridization assemblies, we obtained seven expression types with ratios ≥ 4 . Modes of expression in different growing conditions are shown in Fig. 1 and the expressed transcripts are detailed in Table 2. In modes A, B, F and G, the genes were expressed more abundantly in basidiomatal stages than in mycelial stages. However, their relative intensities were different. As shown in graph A of the gene tree, gene expression was much lower in the solid-cultured mycelia stage as compared with gene expression in graph B. P-type ATPase belonged to this group. In mode C, the expressed transcripts were lower in AF growing conditions. In contrast, the transcripts were higher in AF growing conditions in mode D. The reverse expression pattern was shown in mode E, i.e. transcripts were significant lower in AT growing conditions. The data were similar for SSH, except for type E with endoglucanase. Other gene types that were up-regulated in basidiomes included P-type ATPase and cytochrome P450. Only two kinds of genes, including heat shock protein 30 and NADPH dehydrogenase subunit 5, had ratio values ≤ 0.25 (data not shown).

Confirmation of differential screening

The highly expressed genes (expression ratio >20), including endoglucanase, P-type ATPase, cytochrome P450, prolin

FEMS Microbiol Lett **280** (2008) 150–159

iminopeptidase, β-transducin protein, glucan 1,4-α-maltohexaosidase and three unknown proteins, at different growing conditions were further examined by RT-PCR. In order to confirm the significant expression of these genes in various cultures as indicated SSH and cDNA microarray analysis, we designed specific primers to amplify the unique genes from RNA isolated from the liquid-cultured mycelia. solid-cultured mycelia, solid-cultured basidiomes and natural basidiomes. The gene expression profile via RT-PCR analysis is shown in Fig. 2. The gene encoding endoglucanase was significant in artificial medium, but very weak in natural basidiomes. However, P-type ATPase was significantly expressed in natural basidiomes, but not in liquidcultured mycelia. In addition, two cytochrome P450s showed different expression patterns in different culture conditions. However, these two cytochrome P450s were both significantly expressed in natural basidiomes. Moreover, prolin iminopeptidase, glucan 1,4-α-maltohexaosidase and three unknown proteins were more abundant in natural

Discussion

Various cultured cDNA libraries of *A. cinnamomea* were constructed by using PCR-selected cDNA subtraction. In summary, 945 high-quality clones were identified. The BLASTX analysis results suggested that most of the ESTs (52.4–69.5%) had no significant protein homology to genes from published databases. As the function for basidiomatal formation and biosynthesis of active components remain unknown, cDNA microarray analysis showing the expression patterns for each EST from different developing stages may offer important clues in understanding their functions.

basidiomes than in other cultured tissues.

It has been reported that several genes coding for the cytochrome P450 family of proteins were isolated by

Fig. 1. Clusters of genes with various response kinetics to different growing conditions were analyzed using K-Means (GeneSpring): AL, solid-cultured mycelia; AF, solid-cultured basidiomes; AT, natural basidiomes. Only genes showing greater than fourfold expression changes in at least two conditions were included in the cluster analyses. Each condition has two biological replicates shown on the *x*-axis while the normalized intensity (the ratio of AL, AF and AT to the liquid-cultured mycelia condition) is shown on the *y*-axis. Clusters were subjected to gene tree analyses with the use of GeneSpring

(below). The degree of change was color-coded (yellow, red and green represent no change, and up- and down-regulation, respectively).

Table 2. Annotation of ESTs from subtractive libraries of A. cinnamomea

Category and putative function	Related taxon	Accession no.	М	F	Т	S
Cell fate, cell cycle and DNA processing						
Actin	Paxillus involutus	AAT91279	-	1	_	-
ATP-dependent protein-binding	Cryptococcus neoformans var. neoformans JEC21	AAW46345	1	-	-	Α
protein						
β-Tubulin	Paxillus involutus	AAT91243	-	-	2	-
Calmodulin	Paxillus involutus	AAT91341	-	1	-	-
Cell division control protein Cdc4	Aspergillus fumigatus Af293	EAL89143	1	-	-	-
Cyclin-binding protein	Cryptococcus neoformans var. neoformans JEC21	AAW43561	2	-	-	-
Cytokinesis-related protein	Cryptococcus neoformans var. neoformans JEC21	AAW42225	1	-	-	-
DNA-binding protein	Schizophyllum commune	AAK26659	-	1	_	В
DNA clamp loader	Cryptococcus neoformans var. neoformans JEC21	AAW41633	-	-	1	-
DNA supercoiling,	Cryptococcus neoformans var. neoformans JEC21	AAW43155	-	_	1	A
Golgi reassembly-stacking protein 2	Gallus gallus	XP_422002	-	1	_	-
Histone	Agaricus bisporus	CAC03460	-	-	2	С
Histone H2B	Agaricus bisporus	CAA63898	-	-	2	Α
Histone H3	Lentinula edodes	BAD11819	_	1	_	В
TOM1 protein	Neurospora crassa	CAB92704	-	_	1	В
Tyrosine recombinase	Coprinopsis cinerea	DAA01992	-	_	1	А
Zeta DNA polymerase	Cryptococcus neoformans var. neoformans JEC21	AAW41897	_	_	1	С
Cell rescue, defense, and virulence						
Catalase	Cryptococcus neoformans var. neoformans JEC21	AAW45227	_	_	1	В
Chaperone activator	Cryptococcus neoformans var. neoformans JEC21	AAW40882	_	_	1	_
Heat-induced catalase	Pleurotus sajor-caju	AAK15159	_	_	1	В
Heat shock protein 30	Coriolus versicolor	BAA76591	23	_	_	_
HSP100	Pleurotus sajor-caju	AAF01451	5	_	_	_
Protein FDD123	Trametes versicolor	074631	15	_	_	_
rds1	Schizosaccharomyces pombe	CAA54544	4	_	_	_
Small heat shock protein	Laccaria bicolor	AAM78595	16	_	_	_
Tetracycline efflux protein	Cryptococcus neoformans var. neoformans JEC21	AAW42686	1	_	_	_
Thiosulfate sulfurtransferase	Cryptococcus neoformans var. neoformans IEC 21	AAW43312	_	_	1	_
Cellular transport, transport facilitation a	nd transport routes					
Allantoate permease	Neurospora crassa	CAE81935	_	_	1	С
Antho-REamide neuropentides type	Anthopleura elegantissima	016994	1	1	_	_
2 precursor		L				
Amino acid transporter	Amanita muscaria	CAB38005	_	_	1	_
arp2/3 complex 16-kDa subunit	Cryptococcus neoformans var neoformans IEC21	AAW40905	_	1	_	_
ATP-binding/permease protein	Silicibacter pomerovi DSS-3	AAV/95597	_	1	_	_
ATP-dependent permease	Cryptococcus neoformans var. neoformans IEC 21	AAW44322	_	1	_	Δ
Calcium-transporting ATPase	Cryptococcus neoformans var. neoformans JEC21	AAW46512	1	_	_	_
Carboxylic acid transport protein	Cryptococcus neoformans var. neoformans JEC21	AAW/45996	_	_	1	D
CoA-binding protein	Geobacter sulfurreducens PCA	NP 952665	_	_	1	_
	Asperaillus fuminatus Af293	FAI 91315	1	_	_	_
GEF1	Cryptococcus neoformans var neoformans	AA\/98485	_	1	_	_
Golgi vesicle transport-related	Cryptococcus neoformans var. neoformans IEC 21	AAW/45310	_	1	_	_
protein		///////////////////////////////////////				
GTPase	Cryptococcus peoformans var peoformans IEC 21	۵۵\//46779	1	_	_	_
Hydrogen-exporting ATPase	Cryptococcus neoformans var. neoformans JEC21	ΔΛ\Δ/ΔΔ29	1	_	_	_
isn/	Schizosaccharomyces nombe		_	1		R
Mombrano transportor	Cruntococcus pooformans var. pooformans IEC21	A ANA/46090		1		
MES transporter	Asporaillus fumigatus Af293	EAL 85184	1		1	
Mfc1 1	Asperginus runnigatus Arzas	LAL03104	5		'	A
Nuc inocital transport protain ITP1	Nourospora crassa	CAR00226	J	_	-	_
Nucleoporin interacting protein	riteriospola classa	V V/V1220	-	1	2	_
	Cryptococcus neorormans val. neorormans jecz i	AAVV4230U	-	I	_	_
	Asporaillus fumigatus Af202	ENIGENO			22	^
r-type ATPase	Asperginus Turnigatus A1293 Sebizophullum communo		_	-	23 1	A
Peptide transporter MTDT	Schizophylium commune		_	I	1	A
Protein transporter	Cryptococcus neotormans var. neotormans JEC21	AAVV45450	-	-	2	G

(Continued)

Table 2. Continued.

Category and putative function	Related taxon	Accession no.	М	F	Т	S
Tartrate transporter	Cryptococcus neoformans var. neoformans JEC21	AAW45350	-	1	-	D
Transporter	Cryptococcus neoformans var. neoformans JEC21	AAW40958	-	_	1	_
UDP-galactose transporter	Cryptococcus neoformans var. neoformans JEC21	AAW46420	-	_	1	С
Urea transporter	Cryptococcus neoformans var. neoformans JEC21	AAW43008	-	_	1	_
Vacuolar ATP synthase	Cryptococcus neoformans var. neoformans JEC21	AAW45529	_	_	2	А
Cellular communication/signal transductio	n					
β -transducin-like protein HET-E2C*4	Podospora anserina	AAL37299	_	2	_	F
G protein β subunit-like protein	Homo sapiens	AAP97225	_	2	_	В
Serine/threonine kinase	Ustilago maydis	AAM97788	_	_	3	F
Phosphoprotein phosphatase	Lentinula edodes	JC7206	_	_	1	_
Polyphenol oxidase	Agaricus bisporus	CAA59432	_	_	1	_
Two-component sensor molecule	Cryptococcus neoformans var. neoformans JEC21	AAW40853	_	_	1	А
Tyrosine phosphatase-like protein	Mus musculus	AAA87037	_	_	1	_
Metabolism						
Acetoacetyl-CoA synthetase	Gallus gallus	XP 415102	1	_	_	_
5-Methyltetrahydropteroyltriglutamate-	Cryptococcus neoformans var. neoformans JEC21		2	_	_	_
homocysteine S-methyltransferase	- 31					
Acyl-CoA dehydrogenase	Cryptococcus neoformans var. neoformans JEC21	AAW45980	_	1	_	F
Acyl-CoA oxidase	Cryptococcus neoformans var. neoformans IEC21	AAW47115	1	_	_	_
Alcohol dehydrogenase homolog Bli-4	Neurospora crassa	CAB99393	1	_	_	_
Arvl-alcohol dehydrogenase	Cryptococcus peoformans var peoformans IEC21	AAW46369	1	_	_	_
Alcohol oxidase 2	Pichia methanolica	AAF02495	_	1	_	D
Carboxylase	Pichia angusta	AAI 69566	_	1	_	B
cdc21	Schizosaccharomyces nombe	CAR76210	_	1	_	_
Citrate synthese	Asperaillus piaer	CAB70210	1	_	_	_
Cytochrome P450	Agaricus hisporus	CAB85700	_	_	1	Δ
Cytoenionie 1450	Conrinonsis cinerea	BAA33717	1	_	1	_
	Coriolus vorsicolor	BAR50027	1	_	1	- C
	Conolas versicoloi	0ADJ9027	_	_ 0	1	ر ۸
	Hotorobacidion apposum	AAVV43909		0	4 2	
		DAN03004	-	1	2	D
	Deparachaete chrusesperium	DADTIOT/	-	1	1	_
		DAD94502	_	_	1	A
2 deovera alucanata	Aeriopus idevis	DADU2914	_	_	1	
2-debxg-b-gluconate		17_174541	_	_	1	D
3-denydrogenase		A A\A/40.400			2	
D-arabinitor z-denydrogenase	Cryptococcus neorormans val. neorormans JEC21		_	_	2	A
Dinydroxy-acid denydratase	Neurospora crassa	CAD70774	-	_	Z	-
Endoglucanase	Annerochaele chrysosponum		27	-	-	E r
Exo-p-1,3-glucanase	Aspergilius proenicis	BAB83607	-	-	Z	F
Farnesyltranstransterase	Cryptococcus neoformans var. neoformans JEC21	AAVV45467	-	I	_	D
Fatty acid β-oxidation-related protein	Cryptococcus neoformans var. neoformans JEC21	AAVV41471	1	-	-	A
Flavin-containing monooxygenase	Aspergillus fumigatus	CAE47890	_	-	1	В
γ-Glutamyltransferase	Neurospora crassa	CAB91242	1	-	-	_
Glucan 1,4-α-maltohexaosidase	Chlorobium phaeobacteroides BS1	ZP_00533568	1	-	-	E
Glucanase	Aspergillus fumigatus At293	EAL86910	-	_	1	-
1,4-Glucan-6-transferase	Saccharomyces cerevisiae	AAA34632	-	1	-	_
Glucose 1-dehydrogenase	Nostoc sp. PCC 7120	BAB75535	-	1	-	F
Glycerol dehydrogenase	Symbiobacterium thermophilum IAM 14863	YP_075096	2	-	-	-
Glycogen phosphorylase	Cryptococcus neoformans var. neoformans JEC21	AAW44124	1	-	2	В
ich1 protein	Aspergillus fumigatus At293	EAL89337	-	2	-	F
Isocitrate lyase	Fomitopsis palustris	BAD93181	1	-	-	-
Methionine synthase	Aspergillus fumigatus Af293	EAL92377	-	1	-	С
2-Methylcitrate dehydratase	Burkholderia pseudomallei K96243	YP_111731	-	-	2	-
Molybdopterin biosynthesis CNX1	Arabidopsis thaliana	NP_197599	-	1	-	-
protein						
Nitrite reductase	Hebeloma cylindrosporum	CAB60008	1	-	-	В
2-Nitropropane dioxygenase	Cryptococcus neoformans var. neoformans JEC21	AAW44744	-	-	1	А
Nucleoside diphosphate kinase	Paxillus involutus	AAT91294	-	-	1	С

Table 2. Continued.

Category and putative function	Related taxon	Accession no.	М	F	Т	S
Oxoglutarate dehydrogenase	Cryptococcus neoformans var. neoformans JEC21	AAW41534	-	-	1	_
Phytanoyl-CoA dioxygenase family protein	Aspergillus fumigatus Af293	EAL93882	1	-	-	-
Polynucleotide kinase 3'-phosphatase	Rattus norvegicus	NP 001004259	_	1	_	_
Pyruvate carboxylase	Pichia angusta	AAL69566	_	_	1	_
Ouinone reductase	Rubrobacter xvlanophilus DSM 9941	ZP 00187588	_	1	_	_
RAB-protein	Cryptococcus neoformans var. neoformans JEC21	AAW47017	_	_	2	_
geranylgeranyltransferase	51					
Riboflavin aldehyde-forming enzyme	Lentinula edodes	BAD11818	1	_	_	_
Ribose-phosphate diphosphokinase	Cryptococcus neoformans var. neoformans JEC21	AAW44665	_	1	_	_
Saccharopine dehydrogenase	Cryptococcus neoformans var. neoformans JEC21	AAW42771	_	_	1	G
ser/thr protein phosphatase	Aspergillus fumigatus Af293	EAL91474	_	1	_	_
Short-chain alcohol dehydrogenases	Aspergillus fumigatus Af293	EAL89916	_	3	_	F
Sniffer-like family member	Caenorhabditis elegans	NP_506407	_	1	_	_
Sphinganine-1-phosphate aldolase	Cryptococcus neoformans var. neoformans JEC21	AAW44943	_	1	_	_
Succinate dehydrogenase/fumarate	Rubrobacter xylanophilus DSM 9941	ZP_00188707	-	-	1	В
UDP-N-acetylglucosamine	Cryptococcus neoformans var. neoformans JEC21	AAW43995	-	-	1	С
LIDP syloso synthaso	Cryptococcus pooformans var. pooformans IEC 21	A A M 7 7 1 9 1			1	٨
	Loptinula adadas	AAIVIZZ494	-	1	I	A D
Protain fate and synthesis	Lentinula edodes	DAD/1/50	-	I	_	D
Asparaginul-tRNA synthetase	Desulfatalea psychrophila Sv54	CAG36060	_	_	1	R
Aspartic protosso procursor	Phaffia rhodozyma	AAC 17105	_	2	1	۵ ۸
Calnevin	Asperaillus piger	CAC82717	1	2	_	_
Chaperope	Cryptococcus peoformans var peoformans IEC21	ΔΔ\///2238	2	_	_	_
Coiled-coil protein	Chyptococcus neoformans var. neoformans JEC21	AAW42250 AAW/4/562	_	1		Δ
		AAW44502 AAB96833	_	_	1	
Ecotronic viral integration site 5-like	Homo saniens	NP 660288	_	_	1	_
Elongation factor 2	Pichia nastoris	AAO39212	_	_	1	R
Elongation factor 3	Chyptococcus peoformans var. peoformans IEC 21	AA033212 AAM//295/	1		1	_
Eukarvotic translation initiation factor	Chyptococcus neoformans var. neoformans JEC21	AAW42554 AAW/41507	_	1	_	F
3 subunit 7		004082			1	, D
factor 5A		094083	_	_	I	В
fuSed2 protease	Aspergillus fumigatus	CAE17674	-	-	4	A
fuSed3 protease	Aspergillus fumigatus	CAE46473	-	-	1	A
Lectin	Cryptococcus neoformans var. neoformans JEC21	AAW45608	1	-	-	-
Macrolide-binding protein FKBP12	Cryptococcus neoformans var. neoformans JEC21	AAW41744	-	1	1	В
Methionine aminopeptidase 1	Cryptosporidium hominis	XP_668387	1	-	-	-
Methyltransferase-UbiE family	Streptomyces avermitilis MA-4680	BAC69591	2	-	-	-
Prefoldin subunit 3	Neurospora crassa	CAF05883	-	1	-	_
Presenilin associated	Mus musculus	XP_354952	1	-	-	-
Proline imino-peptidase	Xanthomonas axonopodis pv. citri str. 306	AAM37832	_	-	1	C
Proteasome component C2	Neurospora crassa	CAD/0938	1	-	_	-
Protein phosphatase type 2A	Cryptococcus neoformans var. neoformans JEC21	AAW43622	-	-	2	-
Ribosomal protein	Cryptococcus neoformans var. neoformans JEC21	AAW42014	-	-	1	A
Ribosomal L22e protein family	Aspergillus fumigatus At293	EAL92353	-	1	-	A
Ribosomal protein L41	Filobasidiella neoformans	AAG48930	_	-	1	-
RING and UBP finger domain protein	Aspergillus fumigatus At293	EAL89752	2	_	-	-
rRNA intron-encoded homing endonuclease	Pan troglodytes	XP_523367	1	-	-	-
Serine/threonine/tyrosine interacting protein	Homo sapiens	AAH20265	-	-	1	-
Signalosome subunit 4	Danio rerio	Q6P0H6	-	1	1	В
Ubiquitin C-terminal hydrolase	Aspergillus fumigatus Af293	EAL89067	1	-	-	-
t-complex protein 1, α subunit	Cryptococcus neoformans var. neoformans JEC21	AAW42082	-	-	1	-

(Continued)

Table 2. Continued.

Category and putative function	Related taxon	Accession no.	М	F	Т	S
Tripeptidyl aminopeptidase	Aspergillus oryzae	AAU10333	-	-	2	F
Ubiquitin fusion degradation protein	Aspergillus fumigatus Af293	EAL88739	-	-	1	-
Ubiquitin fusion degradation	Schizosaccharomyces pombe	AAC80427	-	-	2	-
protein-2						
Transcription						
α-integrin-binding protein 80	Homo sapiens	CAB38231	-	-	1	-
Baker yeast's zinc finger protein RTS2	Cryptococcus neoformans var. neoformans JEC21	AAW46711	-	1	-	_
b-zip transcription factor	Schizosaccharomyces pombe	T41672	-	-	1	-
p68-like protein	Cryptococcus neoformans var. neoformans JEC21	AAW43962	-	1	-	-
Pre-mRNA splicing factor	Cryptococcus neoformans var. neoformans JEC21	AAW43637	-	-	2	_
Pre-mRNA splicing factor prp1	Cryptococcus neoformans var. neoformans JEC21	AAW40677	-	2	-	В
Polyadenylate-binding protein	Cryptococcus neoformans var. neoformans JEC21	AAW45527	-	-	1	В
Single-stranded nucleic acid binding	Cryptococcus neoformans var. neoformans JEC21	AAW45689	-	1	-	-
protein						
Sm-like protein	Dictyostelium discoideum	AAO50813	-	-	1	В
Transcriptional repressor	Cryptococcus neoformans var. neoformans JEC21	AAW44628	2	-	-	-
tRNA guanylyltransferase	Cryptococcus neoformans var. neoformans JEC21	AAW42632	-	-	1	C
Zinc-finger protein zpr1	Cryptococcus neoformans var. neoformans JEC21	AAW40864	-	-	1	-

M, redundancy number of the sequences in liquid-cultured mycelia ESTs; F, redundancy number of the sequences in solid-cultured basidiomatal ESTs; T, redundancy number of the sequences in wild-type basidiomatal ESTs; S, mode of microarray analysis.

Fig. 2. RT-PCR analysis of gene expression in different growing conditions. Total RNAs isolated from different sources were RT-PCR amplified with gene-specific primers for each specific transcript of *Antrodia cinnamomea*. The 18S rRNA gene was the internal control. The RT-PCR products were subjected to electrophoresis on a 1.2% agarose gel. AM, liquid-cultured mycelium; AL, solid-cultured mycelium; AF, solid-cultured basidiomes; AT, natural basidiomes.

differential screening targeting genes specifically expressed during fruiting in the basidiomycete (De Groot *et al.*, 1997; Muraguchi & Kamada, 2000; Ospina-Giraldo *et al.*, 2000; Sunagawa & Magae, 2005; Yamada *et al.*, 2006). In *A. cinnamomea*, various cytochrome P450s appeared during basidiomatal development. These results indicated that some oxidoreduction reactions driven by cytochrome P450 were necessary during fruiting in basidiomycetes.

PCR confirmed that the gene putative to P-type ATPase was abundant in natural basidiomes. Given that potassium is the most abundant cation in cells, plant-associated fungi and intracellular parasites are permanently or circumstantially exposed to high K^+ , and they must avoid excessive K^+ accumulation activating K^+ efflux systems (Benito *et al.*, 2002). Thus, high P-type ATPase expression is compatible in natural environments.

Comparing our data with results from other basidiomycetes, the identified genes were relatively different. Among basidiomycetes, hydrophobin is one of the most abundant genes in fruit bodies of basidiomycetes, as reported in *A. bisporus* (De Groot *et al.*, 1997), *F. velutipes* (Ando *et al.*, 2001) and *L. edodes* (Ng *et al.*, 2000; Yamada *et al.*, 2006). However, we did not isolate hydrophobin in basidiomatal development of *A. cinnamomea*. Hydrophobin was not detected in *P. ostreatus* also (Sunagawa & Magae, 2005). As *P. ostreatus* only has a short stipe and *A. cinnamomea* has no stipe, hydrophobin may be the only gene closely related to stipe formation.

cDNA microarray and PCR confirmed that several genes found in natural basidiomes had unknown function. It will be worthwhile investigated whether these genes are associated with basidiomatal formation or stress responses. Functional analysis of the novel genes identified in this study will be undertaken in future studies.

157

Acknowledgements

We are grateful for the expert technical assistance of Li-Ju Wang and Shang-Fen Chi. Financial assistance from the Council of Agriculture Executive Yuan (95AS-6.2.1-ST-a6) and the National Science Council (96NSC-2317-B-002-011) is gratefully acknowledged.

References

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller M & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acid Res* **25**: 3389–3402.

Ando A, Harada A, Miura K & Tamai Y (2001) A gene encoding a hydrophobin, *fvh1*, is specifically expressed after the induction of fruiting in the edible mushroom *Flammulina velutipes. Curr Genet* **39**: 190–197.

Benito B, Garciadeblás B & Rodríguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. *Microbiology* **148**: 933–941.

Chang S, Puryear J & Cairney J (1993) A simple and efficient method for isolation of RNA from pine trees. *Plant Mol Biol Rep* **11**: 113–116.

Chang TT & Chou WN (2004) *Antrodia cinnamomea* reconsidered and *A. salmonea* sp. nov. on *Cunninghamia konishii* in Taiwan. *Bot Bull Acad Sin* **45**: 347–352.

Chen CC, Chyau CC & Hseu TH (2007) Production of a COX-2 inhibitor, 2,4,5-trimethoxybenzaldehyde, with submerged cultured *Antrodia camphorata*. *Lett Appl Microbiol* **44**: 387–392.

Chen YR, Lee YR, Wang SY, Chang ST, Shaw JF & Chu FH (2004) Establishment of expressed sequence tags from Taiwania (*Taiwania cryptomerioides* Hayata) seedling cDNA. *Plant Sci* **167**: 955–957.

Cheng JJ, Huang NK, Chang TT, Wang DL & Lu MK (2005) Study for anti-angiogenic activities of polysaccharides isolated from *Antrodia cinnamomea* in endothelial cells. *Life Sci* **76**: 3029–3042.

De Groot PWJ, Schaap PJ, Van Griensven LJLD & Visser J (1997) Isolation of developmentally regulated genes from edible mushroom *Agaricus bisporus*. *Microbiology* **143**: 1993–2001.

Dogra N & Breuil C (2004) Suppressive subtractive hybridization and differential screening identified genes differentially expressed in yeast and mycelial forms of *Ophiostoma piceae*. *FEMS Microbiol Lett* **238**: 175–181.

Han HF, Nakamura N, Zuo F, Hirakawa A, Yokozawa T & Hattori M (2006) Protective effects of a neutral polysaccharide isolated from the mycelium of *Antrodia cinnamomea* on *Propionibacterium acnes* and lipopolysaccharide induced hepatic injury in mice. *Chem Pharm Bull* **54**: 496–500.

Hseu YC, Chang WC, Hseu YT, Lee CY, Yech YJ, Chen PC, Chen JY & Yang HL (2002) Protection of oxidative damage by aqueous extract from *Antrodia camphorata* mycelia in normal human erythrocytes. *Life Sci* **71**: 469–482.

- Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, Lai YC & Yang HL (2005) Anti-inflammatory potential of *Antrodia Camphorata* through inhibition of NOS, COX-2 and cytokines via the NF-kappa B pathway. *Int Immunopharmacol* **5**: 1914–1925.
- Hsiao G, Shen MY, Lin KH, Lan MH, Wu LY, Chou DS, Lin CH, Su CH & Sheu JR (2003) Antioxidative and hepatoprotective effects of *Antrodia camphorata* extract. *J Agric Food Chem* **51**: 3302–3308.

Huang JK, Ken CF, Huang HM & Lin CT (2007) Biochemical characterization of a novel 2-Cys peroxiredoxin from *Antrodia camphorata*. *Appl Microbiol Biotechnol* **74**: 84–92.

Lee IH, Huang RL, Chen CT, Chen HC, Hsu WC & Lu MK (2002) Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett **209**: 63–67.

Lee SH, Kim BG, Kim KJ *et al.* (2002) Comparative analysis of sequences expressed during the lipid-cultured mycelia and fruit body stages of *Pleurotus ostreatus*. *Fungal Genet Biol* **35**: 115–134.

Lin JF & Wu SH (2004) Molecular events in senescing *Arabidopsis* leaves. *Plant J* **39**: 612–628.

Liu JJ, Huang TS, Hsu ML, Chen CC, Lin WS, Lu FJ & Chang WH (2004) Antitumor effects of the partially purified polysaccharides from *Antrodia camphorata* and the mechanism of its action. *Toxicol Appl Pharmacol* **201**: 186–193.

Lu ZM, Tao WY, Zou XL, Fu HZ & Ao ZH (2007) Protective effects of mycelia of *Antrodia camphorata* and *Armillariella tabescens* in submerged culture against ethanol-induced hepatic toxicity in rats. *J Ethnopharmacol* **110**: 160–164.

Morse AM, Cooke JEK & Davis JM (2004) Functional genomics in forest trees. *Molecular Genetics and Breeding of Forest Trees* (Kumar S & Fladung M, eds), pp. 3–18. Food Products Press, Inc., USA.

Muraguchi H & Kamada T (2000) A mutation in the *eln2* gene encoding a cytochrome P450 of *Coprinus cinereus* affects mushroom morphogenesis. *Fungal Genet Biol* **29**: 49–59.

Nakamura N, Hirakawa A, Gao JJ, Kakuda H, Shiro M, Komatsu Y, Sheu CC & Hattori M (2004) Five new maleic and succinic acid derivatives from the mycelium of *Antrodia camphorata* and their cytotoxic effects on LLC tumor cell line. *J Nat Prod* **67**: 46–48.

Ng WL, Ng TP & Kwan HS (2000) Cloning and characterization of two hydrophobin genes differentially expressed during fruit body development in *Lentinula edodes*. *FEMS Microbiol Lett* **185**: 139–145.

Ospina-Giraldo MD, Collopy PD, Romaine CP & Royse DJ (2000) Classification of sequences expressed during the primordial and basidiome stages of the cultivated mushroom *Agaricus bisporus. Fungal Genet Biol* **29**: 81–94.

Shen CC, Shen YC, Wang YH, Lin LC, Don MJ, Liou KT, Wang WY, Hou YC & Chang TT (2006) New lanostanes and naphthoquinones isolated from *Antrodia salmonea* and their antioxidative burst activity in human leukocytes. *Planta Med* 72: 199–203.

- Shen YC, Wang YH, Chou YC, Chen CF, Lin LC, Chang TT, Tien JH & Chou CJ (2004) Evaluation of the anti-inflammatory activity of zhankuic acids isolated from the fruiting bodies of *Antrodia camphorata. Planta Med* **70**: 310–314.
- Song TY & Yen GC (2003) Protective effects of fermented filtrate from *Antrodia camphorata* in submerged culture against CCl₄induced hepatic toxicity in rats. *J Agric Food Chem* **51**: 1571–1577.
- Sunagawa M & Magae Y (2005) Isolation of genes differentially expressed during the fruit body development of *Pleurotus*

ostreatus by differential display of RAPD. *FEMS Microbiol Lett* **246**: 279–284.

- Wang GJ, Tseng HW, Chou CJ, Tsai TH, Chen CT & Lu MK (2003) The vasorelaxation of *Antrodia camphorata* mycelia: Involvement of endothelial Ca²⁺-NO-cGMP pathway. *Life Sci* 73: 2769–2783.
- Yamada M, Sakuraba S, Shibata K, Taguchi G, Inatomi S, Okazaki M & Shimosaka M (2006) Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete *Flammulina velutipes* by fluorescence differential display. *FEMS Microbiol Lett* **254**: 165–172.

Downloaded from http://femsle.oxfordjournals.org/ by guest on June 21, 2016

159