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RESEARCH ARTICLE
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Abstract

Background: Amyotrophic lateral sclerosis is a neurodegenerative disease of motor neurons resulting in progressive paraly-
sis and death, typically within 3–5 years. Although the heritability of ALS is about 60%, only about 11% is explained by
common gene variants, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integ-
rity during cellular replication and shorten naturally with age. Gender and age are risk factors for ALS and also associ-
ated with telomere length. We therefore investigated telomere length in ALS. Methods: We estimated telomere length by
applying a bioinformatics analysis to whole genome sequence data of leukocyte-derived DNA from people with ALS and
age and gender-matched matched controls in a UK population. We tested the association of telomere length with ALS
and ALS survival. Results: There were 1241 people with ALS and 335 controls. The median age for ALS was 62.5 years
and for controls, 60.1 years, with a male–female ratio of 62:38. Accounting for age and sex, there was a 9% increase of
telomere length in ALS compared to matched controls. Those with longer telomeres had a 16% increase in median sur-
vival. Of nine SNPs associated with telomere length, two were also associated with ALS: rs8105767 near the ZNF208

gene (p¼1.29�10�4) and rs6772228 (p = 0.001), which is in an intron for the PXK gene. Conclusions: Longer telo-
meres in leukocyte-derived DNA are associated with ALS, and with increased survival in those with ALS.

KEYWORDS: ALS; telomere; next-generation sequencing; whole genome sequencing; bioinformatics; variant calling;
structural variants

Introduction

Amyotrophic lateral sclerosis is a neurodegenera-

tive disease of motor neurons leading to progres-

sive muscle weakness and death through

neuromuscular respiratory failure (1). Although

the heritability of ALS is about 60% (2), the herit-

ability explained by common gene variants is only

about 11% (3) suggesting that other forms of gen-

etic variation play an important role.

Telomeres are repeated DNA sequences

located at the ends of chromosomes and exist to

maintain DNA integrity during cellular replication;

chromosome ends tend to shorten with replication,

and the repeat region protects against the loss of
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important gene sequences because loss of repeats

can be tolerated (4). As such, telomeres shorten

naturally with age as repeats are lost during repli-

cation cycles (5). Natural variation in telomere

length exists in the population, with women on

average having longer telomeres than men (6);

shorter telomeres are associated with an increased

risk of cancer (7).

A major risk factor for ALS is age (8) and ALS

is also more common in men than women (9):

both age and sex are related to telomere length.

Furthermore, there are some similarities between

ALS and cancer (10), such as evidence for a multi-

step process in pathogenesis (11,12). We therefore

investigated telomere length in ALS.

Materials and methods

Whole-genome sequencing

Samples were from multiple centers across the UK

contributing to the international Project MinE

whole genome sequencing initiative (13).

DNA was isolated from venous blood using

standard methods. The DNA concentrations were

set at 100 ng/uL as measured by a fluorimeter with

the PicoGreen
VR

dsDNA (Thermo Scientific,

Waltham, MA) quantitation assay. DNA integrity

was assessed using gel electrophoresis. All samples

were sequenced using Illumina’s FastTrack serv-

ices (Illumina, San Diego, CA) on the Illumina

HiSeq 2000 platform (14). Sequencing was 100bp

paired-end performed using polymerase chain

reaction (PCR)-free library preparations and

yielded �40x coverage across each sample. Binary

sequence alignment/map formats (BAM) were gen-

erated for each individual.

Determination of telomere length

TelSeq (15) was used to quantify telomere length

using data from whole genome sequences.

Telomere lengths were estimated from reads,

defined as repeats of more than seven

TTAGGG motifs.

Assessment of nine loci affecting mean telomere length

and their association with ALS

We selected nine SNPs, reported in multiple

genome-wide association studies (GWAS) as asso-

ciated with mean telomere length in European-

derived populations. The selected SNPs were

rs6772228-PXK (16), rs9419958-OBFC1 (17),

rs9420907-OBFC1 (18), rs4387287- OBFC1

(10), rs3027234-CTC1 (17), rs8105767-ZNF208

(18), rs412658-ZNF676 (17), rs6028466-DHX35

(17), and rs755017-ZBTB46 (17).

Statistical analysis

The effects of telomere length on ALS were tested

using a generalized linear regression model, which

included total telomere length, age and sex, to pre-

dict disease affected status. To assess the model,

Pearson’s chi-squared test was used.

Because telomere length correlates with age, we

performed an additional test to examine the possi-

bility that survival bias could affect the results. To

do this, we also performed the analysis restricted

to the subgroup of people with ALS onset below

the median cohort age (62 years). Although such

an analysis would halve our sample and therefore

greatly reduce statistical power, the direction of

effect should be observable.

To evaluate SNP effects on telomere length we

calculated Nagelkerke’s R
2 from the results of a

generalized linear model using the value of telo-

mere length, age, gender, and nine SNPs selected

for having been previously shown to associate with

telomere length.

To assess the effect of covariates on telomere

length affecting survival, we used Cox regression,

controlling for age, gender, and site of disease

onset (bulbar or spinal).

To assess the association of genes with ALS we

used the SNP-set sequence kernel association test

(SKAT) (19), which is a test for association

between a set of rare and common variants and

continuous/dichotomous phenotypes using kernel

machine methods.

Statistical tests were performed using IBM

SPSS Statistics version 24.0 (SPSS Inc., Armonk,

NY, USA) (20), RStudio, R Foundation for

Statistical Computing version 3.4.1 (R

Development Core Team, Vienna, Austria) (21).

Ethical approval

Informed consent was obtained from all volunteers

included in this project. Generation of whole gen-

ome sequences was approved by the Trent

Research Ethics Committee 08/H0405/60.

Results

There were 1241 people with apparently sporadic

ALS and 335 controls. The median age for people

with ALS was 62.5 years and for controls, 60.1

years, with a male–female ratio of 62:38 (Table 1).

Table 1. Demographics of the UK sample.

ALS Controls

Total n 1241 335

Male:Female

ratio

766:475 (62% male) 124:211 (37% male)

Mean age 62.9 (SD 11.08) 60.1 (SD 11.47)
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The mean telomere length in people with ALS

was 3.95 kb, and in controls, 3.80 kb, not taking

into account gender or age (Figure 1). Generalized

linear regression accounting for these covariates

showed a mean 9% (95% CI 3%, 15%) increase

of telomere length in people with ALS compared

to age and gender-matched controls (p¼0.008).

In the analysis exploring survival bias as an explan-

ation for our results, in which we restricted testing

to those younger than the median age, the same

direction of effect was observed, although as

expected, because of the greatly reduced sample

size, this did not reach statistical significance

(p¼0.08). Covariate analysis showed that females

(p¼0.03) and younger people (p¼ 2�10�16) had

on average longer telomeres (Table 2), confirming

the results of earlier studies that telomere length

reduces with age and females have on average lon-

ger telomeres.

There was no association between telomere

length and site of disease onset (p¼ 0.7), or with

C9orf72 expansion status (p¼ 0.24).

Cox regression analysis showed that in the ALS

group, those with longer telomeres had a 16%

increase in median survival (hazard ratio 0.81

(95% CI 0.72–0.91), p¼ 0.001).

The generalized linear regression model showed

that of the nine SNPs associated with telomere

length, two were also associated with ALS:

rs8105767 near the ZNF208 gene (p¼1.29� 10�4,

MAF = 0.03) and rs6772228, which is in an

intron for the PXK gene (p¼0.001, MAF = 0.03;

Table 3), but the SKAT test did not show an associ-

ation of overall variant burden in these genes with

ALS after correction for multiple testing (ZNF208,

p¼ 0.81 and PXK, p¼ 0.03). Nagelkerke’s R
2 test

showed that the nine selected SNPs contributed 3%

to the variance in total telomere length.

Discussion

We have shown that longer telomeres are associ-

ated with ALS and with longer survival in ALS. In

keeping with previous studies, we found that mean

telomere length was longer in females and short-

ened with increasing age. Of a panel of nine SNPs

known to be associated with telomere length, two

showed association with ALS, one in ZNF208, and

the other in PXK.

Although both these SNPs, rs6772228 and

rs8105767, are known to be associated with telo-

mere length, no association with ALS was seen in

a previous large genome-wide association study

(22), suggesting that either there is a population-

specific effect, or that the telomere length itself is

driving the association, and other factors that

influence it have a larger effect than these SNPs.

Another possibility is that the difference in results

is because the analysis performed was different, as

we have tested genotypic association, whereas the

genome-wide association study used linear mixed

modeling of alleles.
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Figure 1.. Mean telomere length by age (A), sex (B), and disease status (C). Red bars indicate 95% confidence intervals.

Table 2. Telomere length comparison between people with

ALS and healthy controls using a generalized linear model.

Estimate

(%)

SE of

estimate (%) p Value

Age (per year) �1 0.1 2�10�16

Gender (male vs. female) �5 2 0.03

Case-control status

(controls vs. cases)

�9 3 0.008

Telomere length is greater in ALS than in controls 3



Telomeres have largely been investigated for

their roles in cancer and aging, shorter telomeres

being associated with disease pathology and death.

Surprisingly, telomere elongation is also seen in

about 15% of cancers, such as adenocarcinoma of

the lung and pancreas (23), and in general, cancers

with long telomeres are resistant to therapy and

carry a poor prognosis (24). Telomere elongation

phenomena are well documented but far less well

understood than telomere shortening phenom-

ena (24–28).

A study of telomere length in ALS brains found

a trend to longer telomeres in glial cells (29) con-

sistent with our results, but is in contrast to an

earlier small study of 50 people with ALS and 50

controls, finding that shorter telomeres are associ-

ated with ALS (30).

Our study has some strengths and weaknesses.

Although ALS is a disease of the central nervous

system, our telomere data are derived from leuko-

cyte DNA, since our DNA source was whole

blood. The relationship between leukocyte telo-

meres, which can be expected to shorten with age

as leukocytes undergo mitosis, and telomeres in

neurons, which are post-mitotic, is not clear (31),

but glial and other cells that do undergo mitosis

are probably involved in ALS pathogenesis, and

provide a possible mechanism. Furthermore, we

did not directly measure telomere length using

Southern blotting, but estimated it using whole

genome sequence data. However, our findings

have the advantage of a large sample size of more

than 1200 cases, compared with previous reports

of 50 or fewer. Furthermore, our examined cohort

is more homogeneous in genetic background, and

the sequencing technology used was the same

across the entire cohort. However, one limitation

of our method is that we cannot draw firm conclu-

sions about the exact length of a telomere. The

method we have used, TelSeq, correlates with

results from Southern blotting (32), and Q-PCR

(33) and is in widespread use (31,34).

Nevertheless, different sequencing technologies

will generate different telomere length estimates

because of differences in library preparation and

platform (35,36). To overcome this potential

weakness, we have used the same industry-leading

sequencing platform for all samples, as well as

designing the study to minimize batch effects by

having cases and controls sharing the same

sequencing plate.

We found that longer telomeres were associated

both with ALS and with increased survival in

ALS. It is possible that telomere length does not

associate with ALS risk but only with survival, and

that our cohort was biased in such a way that

those with longer survival were more likely to be

genotyped. In that case, we would also observe an

apparent association with risk, but the driver

would be the actual association with increased sur-

vival. While this possibility cannot be completely

excluded, the cohort tested was an incident cohort,

collected from a population rather than a specialist

clinic, reducing the likelihood of this explanation.

Furthermore, we assessed survival bias by testing

the relationship between telomere length and ALS

in the younger half of the sample. We found the

direction of association of longer telomeres with

ALS was still present, although as expected,

the statistical power was reduced due to the smaller

number of young controls (<175). Replicating these

findings in a bigger cohort such as the entire

Project MinE sample is an important future step.

There are multiple methods available for telo-

mere length analysis, including terminal restriction

fragmentation, quantitative fluorescence in situ

Hybridization (Q-FISH) (37), PCR-based techni-

ques and southern blotting. These techniques

have the disadvantage of lengthy protocols and

limitations, such as the requirement that DNA is

extracted from fresh blood, or that chromosomes

are individually stained, which is a time-consum-

ing process (35,38–41). Differences in applying

these techniques between laboratories can create

measurement differences (41). Thus, for large

scale analyses, whole genome sequence data that

can be processed using a standard bioinformatics

pipeline can standardize measurements and over-

come many of these issues (42). We have shown

that measuring telomere length in a UK cohort is

feasible using a bioinformatics tool, such as

TelSeq, and that this is fast and cost-effective.

Estimating the telomere length with TelSeq on a

single 40x whole genome sequence takes about

Table 3. Assessment of telomere-associated SNPs.

SNP Risk genotype Beta SE p Value

rs6772228 A/T 0.83 0.37 0.001

rs6772228 A/A 0.33 0.37 0.001

rs9419958 T/T 0.61 0.56 0.036

rs9419958 C/T 0.59 0.54 0.031

rs9420907 C/C 0.59 0.53 0.021

rs9420907 A/A 0.6 0.53 0.024

rs4387287 A/A 0.71 0.16 0.014

rs4387287 A/C 0.63 0.07 0.067

rs3027234 G/G 0.62 0.07 0.009

rs3027234 A/G 0.63 0.07 0.011

rs8105767 G/A 0.66 0.08 1.293 10
24

rs8105767 G/G 0.91 0.07 4.893 10
24

rs412658 C/C 0.73 0.07 0.008

rs412658 C/T 0.69 0.06 0.058

rs6028466 G/G 0.36 0.22 0.087

rs6028466 A/G 0.37 0.22 0.088

rs755017 A/A 0.45 0.63 0.054

rs755017 A/G 0.45 0.63 0.052

Investigation of causal effect of telomere length on ALS by

using nine SNPs identified by telomere length GWAS. SNPs

rs8105767 (PXK) and rs6772228 (ZNF208) were associated

with ALS.

SNPs highlighted in bold show association with ALS.
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90min using four threads on a midrange com-

puter, which would translate to about 100 days

for our entire dataset. Since high-performance

computing access is now straightforward, and

multiple computers are able to run the same ana-

lysis in parallel, the analysis time can easily be

shortened significantly.

In this large study of telomere length and ALS,

we have shown that longer telomeres in leukocytes

are associated with ALS, and with increased sur-

vival in those with ALS.
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