966 research outputs found

    Tuning the polarization states of optical spots at the nanoscale on the poincar´e sphere using a plasmonic nanoantenna

    Get PDF
    It is shown that the polarization states of optical spots at the nanoscale can be manipulated to various points on the Poincar´e sphere using a plasmonic nanoantenna. Linearly, circularly, and elliptically polarized near-field optical spots at the nanoscale are achieved with various polarization states on the Poincar´e sphere using a plasmonic nanoantenna. A novel plasmonic nanoantenna is illuminated with diffraction-limited linearly polarized light. It is demonstrated that the plasmonic resonances of perpendicular and longitudinal components of the nanoantenna and the angle of incident polarization can be tuned to obtain optical spots beyond the diffraction limit with a desired polarization and handedness

    Multilayer plasma patterns in paralleled and coupled atmospheric glow discharges

    Get PDF
    We report observations of multilayer plasma patterns in multiple atmospheric glow discharges sustained simultaneously with a single power supply. Depending on operation conditions, these atmospheric glow plasmas either operate in parallel, seemingly independent of one another, or undergo structural coupling. In both scenarios, multilayer structures are observed. These selforganized plasma patterns are stable and their presence remains even when individual atmospheric glow plasmas couple with one another

    Multilayer plasma patterns in atmospheric pressure glow discharges

    Get PDF
    We report observation of self-organized multilayer plasma patterns formed along the length of an atmospheric pressure glow discharge generated over a wide frequency range from 10–100 kHz

    Supersymmetric Model of Muon Anomalous Magnetic Moment and Neutrino Masses

    Get PDF
    We propose the novel lepton-number relationship Lτ=Le+LμL_\tau = L_e + L_\mu, which is uniquely realized by the interaction (ν^eμ^−e^ν^μ)τ^c(\hat \nu_e \hat \mu - \hat e \hat \nu_\mu) \hat \tau^c in supersymmetry and may account for a possibly large muon anomalous magnetic moment. Neutrino masses (with bimaximal mixing) may be generated from the spontaneous and soft breaking of this lepton symmetry.Comment: 10 pages, including 2 figure

    Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds

    Full text link
    The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested in literature to play a primary role in its superconducting pairing. We investigate, by means of LDA calculations, the microscopic origin of such an anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the anharmonic character of the E_{2g} phonon is essentially driven by the small Fermi energy of the sigma holes. We present a simple analytic model which allows us to understand in microscopic terms the role of the small Fermi energy and of the electronic structure. The relation between anharmonicity and nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical Review

    RVB Contribution to Superconductivity in MgB2MgB_2

    Full text link
    We view MgB2MgB_2 as electronically equivalent to (non-staggered) graphite (B−B^- layer) that has undergone a zero gap semiconductor to a superconductor phase transition by a large c-axis (chemical) pressure due to Mg++Mg^{++} layers. Further, like the \ppi bonded planar organic molecules, graphite is an old resonating valence bond (RVB) system. The RVB's are the `preexisting cooper pairs' in the `parental' zero gap semiconducting B−B^- (graphite) sheets that manifests themselves as a superconducting ground state of the transformed metal. Some consequences are pointed out.Comment: 4 pages, 2 figure, RevTex. Based on a talk given at the Institute Seminar Week, IMSc, Madras (12-16, Feb. 2001

    Surface effects in multiband superconductors. Application to MgB2_2

    Full text link
    Metals with many bands at the Fermi level can have different band dependent gaps in the superconducting state. The absence of translational symmetry at an interface can induce interband scattering and modify the superconducting properties. We dicuss the relevance of these effects to recent experiments in MgB2_2

    Electronic structure of MgB2_2: X-ray emission and absorption studies

    Full text link
    Measurements of x-ray emission and absorption spectra of the constituents of MgB2_2 are presented. The results obtained are in good agreement with calculated x-ray spectra, with dipole matrix elements taken into account. The comparison of x-ray emission spectra of graphite, AlB2_2, and MgB2_2 in the binding energy scale supports the idea of charge transfer from σ\sigma to π\pi bands, which creates holes at the top of the bonding σ\sigma bands and drives the high-Tc_cComment: final version as published in PR

    Fermi Surfaces of Diborides: MgB2 and ZrB2

    Full text link
    We provide a comparison of accurate full potential band calculations of the Fermi surfaces areas and masses of MgB2 and ZrB2 with the de Haas-van Alphen date of Yelland et al. and Tanaka et al., respectively. The discrepancies in areas in MgB2 can be removed by a shift of sigma-bands downward with respect to pi-bands by 0.24 eV. Comparison of effective masses lead to orbit averaged electron-phonon coupling constants lambda(sigma)=1.3 (both orbits), lambda(pi)=0.5. The required band shifts, which we interpret as an exchange attraction for sigma states beyond local density band theory, reduces the number of holes from 0.15 to 0.11 holes per cell. This makes the occurrence of superconductivity in MgB2 a somewhat closer call than previously recognized, and increases the likelihood that additional holes can lead to an increased Tc.Comment: 7 pages including 4 figure

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication
    • …
    corecore