2,264 research outputs found

    Quantitying the Effects of Traffic Calming on Emissions Using on-road Measurement

    Get PDF
    The objective of this work was to determine the effect of one form of traffic calming on emissions. Traffic calming is aimed at reducing average vehicle speeds, especially in residential neighborhoods, often using physical road obstructions such as speed bumps, but it also results in a higher number of acceleration/deceleration events which in turn yield higher emissions. Testing was undertaken by driving a warmed-up Euro-1 spark ignition passenger car over a set of speed bumps on a level road, and then comparing the emissions output to a noncalmed level road negotiated smoothly at a similar average speed. For the emissions measurements, a novel method was utilized, whereby the vehicle was fitted with a portable Fourier Transform Infrared (FTIR) spectrometer, capable of measuring up to 51 different components in real-time on the road. The results showed that increases in emissions were much greater than was previously reported by other researchers using different techniques. When traffic-calmed results were compared to a smooth non-calmed road, there were substantial increases in CO2 (90%), CO (117%), NOx (195%) and THC (148%). These results form the basis for a good argument against traffic calming using speed bumps, especially for aggressive drivers. Slowing traffic down with speed restrictions enforced by speed cameras is a more environmentally friendly option

    Evaluation of a FTIR Emission Measurement System for Legislated Emissions Using a SI Car

    Get PDF
    A series of chassis dynamometer test trials were conducted to assess the performance of a Fourier Transform Infra Red (FTIR) system developed for on-road vehicle exhaust emissions measurements. Trials used a EURO 1 emission compliant SI passenger car which, alongside the FTIR, was instrumented to allow the routine logging of engine speed, road speed, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. The chassis dynamometer facility incorporated an ‘industry standard’ measurement system comprising MEXA7400 gas analyzer and CVS bag sampling which was the ‘benchmark’ for the evaluation of FTIR legislated gas-phase emissions (CO, NOx, THC and CO2) measurements. Initial steady state measurements demonstrated strong correlations for CO, NOx and THC (R2 of 0.99, 0.97 0.99, respectively) and a good correlation for CO2 (R2 = 0.92). Subsequent transient and total mass emissions measurements from replicate samplings of four different driving cycles (two standard cycles, FTP75 and NEDC, and two novel cycles based on real-world data collected in Leeds) also show good response of FTIR and satisfied agreement between the FTIR and CVS bag sampling measurements. In general, the trial results demonstrate that the on-board FTIR emission measurement system provides reliable in-journey emissions data

    Breeding Dairy Cows to Reduce Greenhouse Gas Emissions

    Get PDF

    From Quasars to Extraordinary N-body Problems

    Get PDF
    We outline reasoning that led to the current theory of quasars and look at George Contopoulos's place in the long history of the N-body problem. Following Newton we find new exactly soluble N-body problems with multibody forces and give a strange eternally pulsating system that in its other degrees of freedom reaches statistical equilibrium.Comment: 13 pages, LaTeX with 1 postscript figure included. To appear in Proceedings of New York Academy of Sciences, 13th Florida Workshop in Nonlinear Astronomy and Physic

    Most Complex Regular Right-Ideal Languages

    Get PDF
    A right ideal is a language L over an alphabet A that satisfies L = LA*. We show that there exists a stream (sequence) (R_n : n \ge 3) of regular right ideal languages, where R_n has n left quotients and is most complex under the following measures of complexity: the state complexities of the left quotients, the number of atoms (intersections of complemented and uncomplemented left quotients), the state complexities of the atoms, the size of the syntactic semigroup, the state complexities of the operations of reversal, star, and product, and the state complexities of all binary boolean operations. In that sense, this stream of right ideals is a universal witness.Comment: 19 pages, 4 figures, 1 tabl

    Service-oriented simulation using web ontology

    Get PDF
    Copyright © 2012 Inderscience Enterprises Ltd.Commercial-off-the-Shelf (COTS) Simulation Packages (CSPs) have proved popular in a wider industrial setting. Reuse of Simulation Component (SC) models by collaborating organisations or divisions is restricted, however, by the same semantic issues that restrict the inter-organisation use of other software services. Semantic models, in the form of ontology, utilised by a web-service-based discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved using domain-grounded SC ontology to identify reusable components and subsequently loaded into a CSP, and locally or remotely executed. The work is based on a health service simulation that addresses the transportation of blood. The ontology-engineering framework and discovery architecture provide a novel approach to inter-organisation simulation, uncovering domain semantics and providing a less intrusive mechanism for component reuse. The resulting web of component models and simulation execution environments present a nascent approach to simulation grids

    Flat Information Geometries in Black Hole Thermodynamics

    Full text link
    The Hessian of either the entropy or the energy function can be regarded as a metric on a Gibbs surface. For two parameter families of asymptotically flat black holes in arbitrary dimension one or the other of these metrics are flat, and the state space is a flat wedge. The mathematical reason for this is traced back to the scale invariance of the Einstein-Maxwell equations. The picture of state space that we obtain makes some properties such as the occurence of divergent specific heats transparent.Comment: 14 pages, one figure. Dedicated to Rafael Sorkin's birthda

    Effects of dietary protein and fat level and rapeseed oil on growth and tissue fatty acid composition and metabolism in Atlantic salmon (Salmo salar L.) reared at low water temperatures

    Get PDF
    A 12 week feeding trial was conducted to elucidate the interactive effects of dietary fat and protein contents and oil source on growth, fatty acid composition, protein retention efficiency (PRE) and β-oxidation activity of muscle and liver in Atlantic salmon (Salmo salar L.) at low water temperatures (4.2 oC). Triplicate groups of Atlantic salmon (initial weight 1168 g) were fed six isoenergetic diets formulated to provide either 390 g kg-1 protein and 320 g kg-1 fat (high protein (HP) diets) or 340 g kg-1 protein and 360 g kg-1 fat (low protein (LP) diets); within each dietary protein/fat level crude RO comprised 0, 30 or 60% (R0, R30, R60, respectively) of the added oil. After 12 weeks the overall growth and FCR were very good for all treatments (TGC; 4.76 (±0.23), FCR; 0.85 (±0.02)). Significant effects were shown due to oil source on SGR and TGC only. The liver and muscle FA compositions were highly affected by the graded inclusion of RO. The PRE was significantly affected by the dietary protein level, while no significant effects were shown in total β-oxidation capacity of liver and muscle. The results of this study suggest that more sustainable, lower protein diets with moderate RO inclusion can be used in Atlantic salmon culture at low water temperatures with no negative effects on growth and feed conversion, no major detrimental effects on lipid and fatty acid metabolism and a positive effect on protein sparing

    The mass-to-light ratio of rich star clusters

    Full text link
    We point out a strong time-evolution of the mass-to-light conversion factor eta commonly used to estimate masses of unresolved star clusters from observed cluster spectro-photometric measures. We present a series of gas-dynamical models coupled with the Cambridge stellar evolution tracks to compute line-of-sight velocity dispersions and half-light radii weighted by the luminosity. We explore a range of initial conditions, varying in turn the cluster mass and/or density, and the stellar population's IMF. We find that eta, and hence the estimated cluster mass, may increase by factors as large as 3 over time-scales of 50 million years. We apply these results to an hypothetic cluster mass distribution function (d.f.) and show that the d.f. shape may be strongly affected at the low-mass end by this effect. Fitting truncated isothermal (Michie-King) models to the projected light profile leads to over-estimates of the concentration parameter c of delta c ~ 0.3 compared to the same functional fit applied to the projected mass density.Comment: 6 pages, 2 figures, to appear in the proceedings of the "Young massive star clusters", Granada, Spain, September 200

    Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell

    Full text link
    The erbium atomic system is a promising candidate for an atomic Bose-Einstein condensate of atoms with a non-vanishing orbital angular momentum (L≠0L \neq 0) of the electronic ground state. In this paper we report on the frequency stabilization of a blue external cavity diode laser system on the 400.91 nmnm laser cooling transition of atomic erbium. Doppler-free saturation spectroscopy is applied within a hollow cathode discharge tube to the corresponding electronic transition of several of the erbium isotopes. Using the technique of frequency modulation spectroscopy, a zero-crossing error signal is produced to lock the diode laser frequency on the atomic erbium resonance. The latter is taken as a reference laser to which a second main laser system, used for laser cooling of atomic erbium, is frequency stabilized
    • …
    corecore