198 research outputs found

    Tied factor analysis for face recognition across large pose differences

    Get PDF
    Face recognition algorithms perform very unreliably when the pose of the probe face is different from the gallery face: typical feature vectors vary more with pose than with identity. We propose a generative model that creates a one-to-many mapping from an idealized “identity” space to the observed data space. In identity space, the representation for each individual does not vary with pose. We model the measured feature vector as being generated by a pose-contingent linear transformation of the identity variable in the presence of Gaussian noise. We term this model “tied” factor analysis. The choice of linear transformation (factors) depends on the pose, but the loadings are constant (tied) for a given individual. We use the EM algorithm to estimate the linear transformations and the noise parameters from training data. We propose a probabilistic distance metric that allows a full posterior over possible matches to be established. We introduce a novel feature extraction process and investigate recognition performance by using the FERET, XM2VTS, and PIE databases. Recognition performance compares favorably with contemporary approaches

    Dynamic scaling and quasi-ordered states in the two dimensional Swift-Hohenberg equation

    Full text link
    The process of pattern formation in the two dimensional Swift-Hohenberg equation is examined through numerical and analytic methods. Dynamic scaling relationships are developed for the collective ordering of convective rolls in the limit of infinite aspect ratio. The stationary solutions are shown to be strongly influenced by the strength of noise. Stationary states for small and large noise strengths appear to be quasi-ordered and disordered respectively. The dynamics of ordering from an initially inhomogeneous state is very slow in the former case and fast in the latter. Both numerical and analytic calculations indicate that the slow dynamics can be characterized by a simple scaling relationship, with a characteristic dynamic exponent of 1/41/4 in the intermediate time regime

    Grain boundary pinning and glassy dynamics in stripe phases

    Full text link
    We study numerically and analytically the coarsening of stripe phases in two spatial dimensions, and show that transient configurations do not achieve long ranged orientational order but rather evolve into glassy configurations with very slow dynamics. In the absence of thermal fluctuations, defects such as grain boundaries become pinned in an effective periodic potential that is induced by the underlying periodicity of the stripe pattern itself. Pinning arises without quenched disorder from the non-adiabatic coupling between the slowly varying envelope of the order parameter around a defect, and its fast variation over the stripe wavelength. The characteristic size of ordered domains asymptotes to a finite value $R_g \sim \lambda_0\ \epsilon^{-1/2}\exp(|a|/\sqrt{\epsilon}),where, where \epsilon\ll 1isthedimensionlessdistanceawayfromthreshold, is the dimensionless distance away from threshold, \lambda_0thestripewavelength,and the stripe wavelength, and a$ a constant of order unity. Random fluctuations allow defect motion to resume until a new characteristic scale is reached, function of the intensity of the fluctuations. We finally discuss the relationship between defect pinning and the coarsening laws obtained in the intermediate time regime.Comment: 17 pages, 8 figures. Corrected version with one new figur

    Eutectic colony formation: A phase field study

    Full text link
    Eutectic two-phase cells, also known as eutectic colonies, are commonly observed during the solidification of ternary alloys when the composition is close to a binary eutectic valley. In analogy with the solidification cells formed in dilute binary alloys, colony formation is triggered by a morphological instability of a macroscopically planar eutectic solidification front due to the rejection by both solid phases of a ternary impurity that diffuses in the liquid. Here we develop a phase-field model of a binary eutectic with a dilute ternary impurity and we investigate by dynamical simulations both the initial linear regime of this instability, and the subsequent highly nonlinear evolution of the interface that leads to fully developed two-phase cells with a spacing much larger than the lamellar spacing. We find a good overall agreement with our recent linear stability analysis [M. Plapp and A. Karma, Phys. Rev. E 60, 6865 (1999)], which predicts a destabilization of the front by long-wavelength modes that may be stationary or oscillatory. A fine comparison, however, reveals that the assumption commonly attributed to Cahn that lamella grow perpendicular to the envelope of the solidification front is weakly violated in the phase-field simulations. We show that, even though weak, this violation has an important quantitative effect on the stability properties of the eutectic front. We also investigate the dynamics of fully developed colonies and find that the large-scale envelope of the composite eutectic front does not converge to a steady state, but exhibits cell elimination and tip-splitting events up to the largest times simulated.Comment: 18 pages, 18 EPS figures, RevTeX twocolumn, submitted to Phys. Rev.

    Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation

    Get PDF
    Background:Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases.Methods:We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically ‘favourable adiposity’ (FA) and ‘unfavourable adiposity’ (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases.Results:MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism.Conclusions:Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy.Funding:Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute

    Disease consequences of higher adiposity uncoupled from its adverse metabolic effects using Mendelian randomisation

    Get PDF
    Background:Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases.Methods:We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically ‘favourable adiposity’ (FA) and ‘unfavourable adiposity’ (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases.Results:MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism.Conclusions:Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy.Funding:Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute

    Pelvic Pain in Transgender People Using Testosterone Therapy

    Get PDF
    Purpose: This descriptive study aimed to assess the characteristics of pelvic pain and explore predictive factors for pelvic pain in transgender (trans) individuals using testosterone therapy. Methods: An online cross-sectional survey was open between August 28, 2020, and December 31, 2020, to trans people presumed female at birth, using testosterone for gender affirmation, living in Australia, and >16 years of age. The survey explored characteristics of pelvic pain following initiation of testosterone therapy, type and length of testosterone therapy, menstruation history, and relevant sexual, gynecological, and mental health experiences. Logistic regression was applied to estimate the effect size of possible factors contributing to pain after starting testosterone. Results: Among 486 participants (median age = 27 years), 351 (72.2%)* reported experiencing pelvic pain following initiation of testosterone therapy, described most commonly as in the suprapubic region and as ‘‘cramping.’’ Median duration of testosterone therapy was 32 months. Persistent menstruation, current or previous history of post-traumatic stress disorder, and experiences of pain with orgasm were associated with higher odds of pelvic pain after testosterone therapy. No association was observed with genital dryness, intrauterine device use, previous pregnancy, penetrative sexual activities, touching external genitalia, or known diagnoses of endometriosis, vulvodynia, vaginismus, depression, anxiety, or obesity. Conclusions: Pelvic pain is frequently reported in trans people following initiation of testosterone therapy. Given the association with persistent menstruation and orgasm, as well as the known androgen sensitivity of the pelvic floor musculature, further research into pelvic floor muscle dysfunction as a contributor is warranted.Sav Zwickl, Laura Burchill, Alex Fang Qi Wong, Shalem Y. Leemaqz, Teddy Cook, Lachlan M. Angus, Kalen Eshin, Charlotte V. Elder, Sonia R. Grover, Jeffrey D. Zajac, and Ada S. Cheun

    Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge

    Get PDF
    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions in in vitro models. OBJECTIVES: NMs are available with a range of physicochemical characteristics, which allows a more systematic toxicological analysis. Therefore, the study of ultrafine particles (UFP, <100 nm in diameter) provides an opportunity to identify plausible health effects for NMs, and the study of NMs provides an opportunity to facilitate the understanding of the mechanism of toxicity of UFP. METHODS: A workshop of experts systematically analyzed the available information and identified 19 key lessons that can facilitate knowledge exchange between these discipline areas. DISCUSSION: Key lessons range from the availability of specific techniques and standard protocols for physicochemical characterization and toxicology assessment to understanding and defining dose and the molecular mechanisms of toxicity. This review identifies a number of key areas in which additional research prioritization would facilitate both research fields simultaneously. CONCLUSION: There is now an opportunity to apply knowledge from NM toxicology and use it to better inform PM health risk research and vice versa.info:eu-repo/semantics/publishedVersio

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Can we IMPROVE cardiovascular outcomes through phosphate lowering in CKD? Rationale and protocol for the IMpact of Phosphate Reduction on Vascular End-points in Chronic Kidney Disease (IMPROVE-CKD) study

    Get PDF
    Introduction: Patients with chronic kidney disease (CKD) are at heightened cardiovascular risk, which has been associated with abnormalities of bone and mineral metabolism. A deeper understanding of these abnormalities should facilitate improved treatment strategies and patient-level outcomes, but at present there are few large, randomised controlled clinical trials to guide management. Positive associations between serum phosphate and fibroblast growth factor 23 (FGF-23) and cardiovascular morbidity and mortality in both the general and CKD populations have resulted in clinical guidelines suggesting that serum phosphate be targeted towards the normal range, although few randomised and placebo-controlled studies have addressed clinical outcomes using interventions to improve phosphate control. Early preventive measures to reduce the development and progression of vascular calcification, left ventricular hypertrophy and arterial stiffness are crucial in patients with CKD. Methods and analysis: We outline the rationale and protocol for an international, multicentre, randomised parallel-group trial assessing the impact of the non-calcium-based phosphate binder, lanthanum carbonate, compared with placebo on surrogate markers of cardiovascular disease in a predialysis CKD population—the IM pact of P hosphate R eduction O n V ascular E nd-points (IMPROVE)-CKD study. The primary objective of the IMPROVE-CKD study is to determine if the use of lanthanum carbonate reduces the burden of cardiovascular disease in patients with CKD stages 3b and 4 when compared with placebo. The primary end-point of the study is change in arterial compliance measured by pulse wave velocity over a 96-week period. Secondary outcomes include change in aortic calcification and biochemical parameters of serum phosphate, parathyroid hormone and FGF-23 levels. Ethics and dissemination: Ethical approval for the IMPROVE-CKD trial was obtained by each local Institutional Ethics Committee for all 17 participating sites in Australia, New Zealand and Malaysia prior to study commencement. Results of this clinical trial will be published in peer-reviewed journals and presented at conferences.Nicole Lioufas, Nigel D Toussaint, Eugenia Pedagogos, Grahame Elder, Sunil V Badve, Elaine Pascoe, Andrea Valks, Carmel Hawley, Geoffrey A Block, Neil C Boudville, Katrina Campbell, James D Cameron, Sylvia S M Chen, Randall J Faull, Stephen G Holt, Lai S Hooi, Dana Jackson, Meg J Jardine, David W Johnson, Peter G Kerr, Kenneth K Lau, Alicia Morrish, Vlado Perkovic, Kevan R Polkinghorne, Carol A Pollock, Donna Reidlinger, Laura Robison, Edward R Smith, Robert J Walker, Angela Yee Moon Wang
    corecore