52 research outputs found

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)

    Get PDF
    BACKGROUND: Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control. METHODS: Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights. FINDINGS: 5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease. INTERPRETATION: International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    3. SEISMIC STRATIGRAPHY OF THE ONTONG JAVA PLATEAU 1

    No full text
    International audienceThe Ontong Java Plateau, a large, deep-water carbonate plateau in the western equatorial Pacific, is an ideal location for studying responses of carbonate sedimentation to the effects of changing paleoceanographic conditions. These carbonate responses are often reflected in the physical properties of the sediment, which in turn control the appearance of seismic reflection profiles. Seismic stratigraphy analyses, correlating eight reflector horizons to each drill site, have been conducted in an attempt to map stratigraphic data. Accurate correlation of seismic stratigraphic data to drilling results requires conversion of traveltime to depth in meters. Synthetic seismogram models, using shipboard physical properties data, have been generated in an attempt to provide this correlation. Physical properties, including laboratory-measured and well-log data, were collected from sites drilled during Deep Sea Drilling Project Legs 30 and 89, and Ocean Drilling Program Leg 130, on the top and flank of the Ontong Java Plateau. Laboratory-measured density is corrected to in-situ conditions by accounting for porosity rebound resulting from removal of the sediment from its overburden. The correction of laboratory-measured compressional velocity to in situ appears to be largely a function of increases in elastic moduli (especially shear rigidity) with depth of burial, more than a function of changes in temperature, pressure, or density (porosity rebound). Well-log velocity and density data for the ooze intervals were found to be greatly affected by drilling disturbance; hence, they were disregarded and replaced by lab data for these intervals. Velocity and density data were used to produce synthetic seismograms. Correlation of seismic reflection data with synthetic data, and hence with depth below seafloor, at each drill site shows that a single velocity-depth function exists for sediments on the top and flank of the Ontong Java Plateau. A polynomial fit of this function provides an equation for domain conversion: Depth (mbsf) = 44.49 + 0.800(traveltime[ms]) + 3.308 × 10" 4 (traveltime[ms] 2) Traveltime (ms) =-35.18 + 1.118(depth[mbsf])-1.969 × KT* (depth[mbsf] 2) Seismic reflection profiles down the flank of the plateau undergo three significant changes: (1) a drastic thinning of the sediment column with depth, (2) changes in the echo-character of the profile (development of seismic facies), and (3) loss of continuous, coherent reflections. Sediments on the plateau top were largely deposited by pelagic processes, with little significant postdepositional or syndepositional modification. Sediments on the flank of the plateau are also pelagic, but they have been modified by faulting, erosion, and mass movement. These processes result in disrupted and incoherent reflectors, development of seismic facies, and redistribution of sediment on the flank of the plateau. Seismic stratigraphic analyses have shown that the sediment section decreases in thickness by as much as 65% between water depths of 2000 m water depth (at the top of the plateau) and 4000 m (near the base of the plateau). Thinning is attributed to increasing carbonate dissolution with depth. If this assumption is correct, then changes in the relative thicknesses of seismostratigraphic units at each drill site are indicative of changes in the position of the lysocline and the dissolution gradient between the lysocline and the carbonate compensation depth. We think that a shallow lysocline in the early Miocene caused sediment thinning. A deepening of the lysocline in the late-early Miocene caused relative thickening at each site. Within the middle Miocene, a sharp rise in lysoclinal depth occurs, concurrent with a steepening of the dissolution gradient. These events result in sediment thinning at all four sites. The thicker sections in the late Miocene likely correspond to a deepening of the lysocline, and a subsequent rise in the lysocline again hinders accumulation of sediment in the very late Miocene and Pliocene

    Data from: Constraints on trait combinations explain climatic drivers of biodiversity: the importance of trait covariance in community assembly

    No full text
    Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes
    • 

    corecore