37 research outputs found

    Determining the Drift Time of Charge Carriers in P-Type Point-Contact HPGe Detectors

    Full text link
    An algorithm to measure the drift time of charge carriers in p-type point contact (PPC) high-purity germanium (HPGe) detectors from the signals processed with a charge-sensitive preamplifier is introduced. It is demonstrated that the drift times can be used to estimate the distance of charge depositions from the point contact and to characterize losses due to charge trapping. A correction for charge trapping effects over a wide range of energies is implemented using the measured drift times and is shown to improve the energy resolution by up to 30%.Comment: 16 pages, 8 figures, submitted to Nucl. Instrum. Meth.

    The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources

    Full text link
    The production and analysis of distributed sources of 24Na and 222Rn in the Sudbury Neutrino Observatory (SNO) are described. These unique sources provided accurate calibrations of the response to neutrons, produced through photodisintegration of the deuterons in the heavy water target, and to low energy betas and gammas. The application of these sources in determining the neutron detection efficiency and response of the 3He proportional counter array, and the characteristics of background Cherenkov light from trace amounts of natural radioactivity is described.Comment: 24 pages, 13 figure

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Radiopurity assessment of the energy readout for the NEXT double beta decay experiment

    Full text link
    [EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) experiment intends to investigate the neutrinoless double beta decay of 136Xe, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4 × 10¿4 counts per keV, kg and year, satisfying the sensitivity requirements of the NEXT experiment.Special thanks are due to LSC directorate and staff for their strong support for performing the measurements at the LSC Radiopurity Service. We are really grateful to Grzegorz Zuzel for the radon emanation measurements. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROMETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A & and the University of Texas at Arlington.Cebrian, S.; Perez, J.; Bandac, I.; Labarga, L.; Álvarez-Puerta, V.; Azevedo, CDR.; Benlloch-Rodriguez, JM.... (2017). Radiopurity assessment of the energy readout for the NEXT double beta decay experiment. Journal of Instrumentation. 12. https://doi.org/10.1088/1748-0221/12/08/T08003S12Avignone, F. T., Elliott, S. R., & Engel, J. (2008). Double beta decay, Majorana neutrinos, and neutrino mass. Reviews of Modern Physics, 80(2), 481-516. doi:10.1103/revmodphys.80.481Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Renner, J., Farbin, A., Vidal, J. M., Benlloch-Rodríguez, J. M., Botas, A., Ferrario, P., … Borges, F. I. G. (2017). Background rejection in NEXT using deep neural networks. Journal of Instrumentation, 12(01), T01004-T01004. doi:10.1088/1748-0221/12/01/t01004Dafni, T., Álvarez, V., Bandac, I., Bettini, A., Borges, F. I. G. M., Camargo, M., … Conde, C. A. N. (2016). Results of the material screening program of the NEXT experiment. Nuclear and Particle Physics Proceedings, 273-275, 2666-2668. doi:10.1016/j.nuclphysbps.2015.10.024Cebrián, S., Pérez, J., Bandac, I., Labarga, L., Álvarez, V., Barrado, A. I., … Cárcel, S. (2015). Radiopurity assessment of the tracking readout for the NEXT double beta decay experiment. Journal of Instrumentation, 10(05), P05006-P05006. doi:10.1088/1748-0221/10/05/p05006Wang, X., Chen, X., Fu, C., Ji, X., Liu, X., Mao, Y., … Zhang, T. (2016). Material screening with HPGe counting station for PandaX experiment. Journal of Instrumentation, 11(12), T12002-T12002. doi:10.1088/1748-0221/11/12/t12002Barrow, P., Baudis, L., Cichon, D., Danisch, M., Franco, D., Kaether, F., … Wulf, J. (2017). Qualification tests of the R11410-21 photomultiplier tubes for the XENON1T detector. Journal of Instrumentation, 12(01), P01024-P01024. doi:10.1088/1748-0221/12/01/p01024Busto, J., Gonin, Y., Hubert, F., Hubert, P., & Vuilleumier, J.-M. (2002). Radioactivity measurements of a large number of adhesives. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 492(1-2), 35-42. doi:10.1016/s0168-9002(02)01280-9Nisi, S., Di Vacri, A., Di Vacri, M. L., Stramenga, A., & Laubenstein, M. (2009). Comparison of inductively coupled mass spectrometry and ultra low-level gamma-ray spectroscopy for ultra low background material selection. Applied Radiation and Isotopes, 67(5), 828-832. doi:10.1016/j.apradiso.2009.01.02

    The Majorana Demonstrator readout electronics system

    Get PDF
    The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated

    The MAJORANA experiment: An ultra-low background search for neutrinoless double-beta decay

    Get PDF
    The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the MAJORANA experiment, known as the DEMONSTRATOR, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a narrow region of interest around the 76Ge neutrinoless double-beta decay peak

    The Majorana Demonstrator: Progress towards showing the feasibility of a tonne-scale 76Ge neutrinoless double-beta decay experiment

    Get PDF
    The Majorana Demonstrator will search for the neutrinoless double-beta decay (0vββ) of the 76Ge isotope with a mixed array of enriched and natural germanium detectors. The observation of this rare decay would indicate the neutrino is its own anti-particle, demonstrate that lepton number is not conserved, and provide information on the absolute mass-scale of the neutrino. The Demonstrator is being assembled at the 4850 foot level of the Sanford Underground Research Facility in Lead, South Dakota. The array will be contained in a low-background environment and surrounded by passive and active shielding. The goals for the Demonstrator are: demonstrating a background rate less than 3 t-1 y-1 in the 4 keV region of interest (ROI) surrounding the 2039 keV 76Ge endpoint energy; establishing the technology required to build a tonne-scale germanium based double-beta decay experiment; testing the recent claim of observation of 0vββ [1]; and performing a direct search for light WIMPs (3-10 GeV/c2)

    Characteristics of signals originating near the lithium-diffused N+ contact of high purity germanium p-type point contact detectors

    Get PDF
    A study of signals originating near the lithium-diffused n+ contact of p-type point contact (PPC) high purity germanium detectors (HPGe) is presented. The transition region between the active germanium and the fully dead layer of the n+ contact is examined. Energy depositions in this transition region are shown to result in partial charge collection. This provides a mechanism for events with a well defined energy to contribute to the continuum of the energy spectrum at lower energies. A novel technique to quantify the contribution from this source of background is introduced. Experiments that operate germanium detectors with a very low energy threshold may benefit from the methods presented herein

    The MAJORANA DEMONSTRATOR for 0νββ: Current Status and Future Plans

    Get PDF
    The MAJORANA DEMONSTRATOR will search for neutrinoless-double-beta decay (0νββ) in 76Ge, while establishing the feasibility of a future tonne-scale germanium-based 0νββ experiment, and performing searches for new physics beyond the Standard Model. The experiment, currently under construction at the Sanford Underground Research Facility in Lead, SD, will consist of a pair of modular high-purity germanium detector arrays housed inside of a compact copper, lead, and polyethylene shield. Through a combination of strict materials qualifications and assay, low-background design, and powerful background rejection techniques, the Demonstrator aims to achieve a background rate in the 0νββ region of interest (ROI) of no more than 3 counts in the 0νββ-decay ROI per tonne of target isotope per year (cnts/(ROI-t-y)). The current status of the Demonstrator is discussed, as are plans for its completion

    A Dark Matter Search with MALBEK

    Get PDF
    The Majorana Demonstrator is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the Majorana research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal
    corecore