86 research outputs found
On the minimal penalty for Markov order estimation
We show that large-scale typicality of Markov sample paths implies that the
likelihood ratio statistic satisfies a law of iterated logarithm uniformly to
the same scale. As a consequence, the penalized likelihood Markov order
estimator is strongly consistent for penalties growing as slowly as log log n
when an upper bound is imposed on the order which may grow as rapidly as log n.
Our method of proof, using techniques from empirical process theory, does not
rely on the explicit expression for the maximum likelihood estimator in the
Markov case and could therefore be applicable in other settings.Comment: 29 page
Performance of Glass Resistive Plate Chambers for a high granularity semi-digital calorimeter
A new design of highly granular hadronic calorimeter using Glass Resistive
Plate Chambers (GRPCs) with embedded electronics has been proposed for the
future International Linear Collider (ILC) experiments. It features a 2-bit
threshold semi-digital read-out. Several GRPC prototypes with their electronics
have been successfully built and tested in pion beams. The design of these
detectors is presented along with the test results on efficiency, pad
multiplicity, stability and reproducibility.Comment: 16 pages, 15 figure
First test of a power-pulsed electronics system on a GRPC detector in a 3-Tesla magnetic field
An important technological step towards the realization of an ultra-granular
hadronic calorimeter to be used in the future International Linear Collider
(ILC) experiments has been made. A 33X50 cm2 GRPC detector equipped with a
power-pulsed electronics board offering a 1cm2 lateral segmentation was
successfully tested in a 3-Tesla magnet operating at the H2 beam line of the
CERN SPS. An important reduction of power consumption with no deterioration of
the detector performance is obtained when the power-pulsing mode is applied.
This important result shows that ultra-granular calorimeters for ILC
experiments are not only an attractive but also a realistic option.Comment: 10 pages, 9 figure
Role of surface roughness in hard x-ray emission from femtosecond laser produced copper plasmas
The hard x-ray emission in the energy range of 30-300 keV from copper plasmas
produced by 100 fs, 806 nm laser pulses at intensities in the range of
10 W cm is investigated. We demonstrate that surface
roughness of the targets overrides the role of polarization state in the
coupling of light to the plasma. We further show that surface roughness has a
significant role in enhancing the x-ray emission in the above mentioned energy
range.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions
Molecular dynamics simulations are performed to study the lithium jumps in
LiPO3 glass. In particular, we calculate higher-order correlation functions
that probe the positions of single lithium ions at several times. Three-time
correlation functions show that the non-exponential relaxation of the lithium
ions results from both correlated back-and-forth jumps and the existence of
dynamical heterogeneities, i.e., the presence of a broad distribution of jump
rates. A quantitative analysis yields that the contribution of the dynamical
heterogeneities to the non-exponential depopulation of the lithium sites
increases upon cooling. Further, correlated back-and-forth jumps between
neighboring sites are observed for the fast ions of the distribution, but not
for the slow ions and, hence, the back-jump probability depends on the
dynamical state. Four-time correlation functions indicate that an exchange
between fast and slow ions takes place on the timescale of the jumps
themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites
featuring fast and slow lithium dynamics, respectively, are intimately mixed.
In addition, a backward correlation beyond the first neighbor shell for highly
mobile ions and the presence of long-range dynamical heterogeneities suggest
that fast ion migration occurs along preferential pathways in the glassy
matrix. In the melt, we find no evidence for correlated back-and-forth motions
and dynamical heterogeneities on the length scale of the next-neighbor
distance.Comment: 12 pages, 13 figure
A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site
This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda
- …