868 research outputs found

    The rate of cosmic ray showers at large zenith angles: a step towards the detection of ultra-high energy neutrinos by the Pierre Auger Observatory

    Get PDF
    It is anticipated that the Pierre Auger Observatory can be used to detect cosmic neutrinos of >10^19 eV that arrive at very large zenith angles. However showers created by neutrino interactions close to the detector must be picked out against a background of similar events initiated by cosmic ray nuclei. As a step towards understanding this background, we have made the first detailed analysis of air showers recorded at Haverah Park (an array which used similar detectors to those planned for the Auger Observatory) with zenith angles above 60 degs. We find that the differential shower rate from 60 degs to 80 degs. can be predicted accurately when we adopt the known primary energy spectrum above 10^17 eV and assume the QGSJET model and proton primaries. Details of the calculation are given.Comment: 22 pages, 12 figures, to appear in Astroparticle Physic

    Hydrogen recombination continuum as the radiative model for stellar optical flares

    Get PDF
    The study of stellar flares has increased with new observations from CoRoT, Kepler, and TESS satellites, revealing the broad-band visible emission from these events. Typically, stellar flares have been modelled as 104 K blackbody plasma to obtain estimates of their total energy. In the Sun, white-light flares (WLFs) are much fainter than their stellar counterparts, and normally can only be detected via spatially resolved observations. Identifying the radiation mechanism for the formation of the visible spectrum from solar and stellar flares is crucial to understand the energy transfer processes during these events, but spectral data for WLFs are relatively rare, and insufficient to remove the ambiguity of their origin: photospheric blackbody radiation and/or Paschen continuum from hydrogen recombination in the chromosphere. We employed an analytical solution for the recombination continuum of hydrogen instead of the typically assumed 104 K blackbody spectrum to study the energy of stellar flares and infer their fractional area coverage. We investigated 37 events from Kepler-411 and five events from Kepler-396, using both radiation mechanisms. We find that estimates for the total flare energy from the H recombination spectrum are about an order of magnitude lower than the values obtained from the blackbody radiation. Given the known energy transfer processes in flares, we argue that the former is a physically more plausible model than the latter to explain the origin of the broad-band optical emission from flares

    Determination of the calorimetric energy in extensive air showers

    Full text link
    The contribution of different components of an air shower to the total energy deposit in the atmosphere, for different angles and primary particles, was studied using the CORSIKA air shower simulation code. The amount of missing energy, parameterized in terms of the calorimetric energy, was calculated. The results show that this parameterization varies less than 1% with angle or observation level. The dependence with the primary mass is less than 5% and, with the high energy hadronic interaction model, less than 2%. The systematic error introduced by the use of just one parameterization of the missing energy correction function, for an equal mixture of proton and iron at 45deg, was calculated to be below 3%. We estimate the statistical error due to shower-to-shower fluctuations to be about 1%.Comment: 15 pages, 4 figures, 4 tables. This version corresponds to the one aproved for publication in Astroparticle Physic

    Reduced basis isogeometric mortar approximations for eigenvalue problems in vibroacoustics

    Full text link
    We simulate the vibration of a violin bridge in a multi-query context using reduced basis techniques. The mathematical model is based on an eigenvalue problem for the orthotropic linear elasticity equation. In addition to the nine material parameters, a geometrical thickness parameter is considered. This parameter enters as a 10th material parameter into the system by a mapping onto a parameter independent reference domain. The detailed simulation is carried out by isogeometric mortar methods. Weakly coupled patch-wise tensorial structured isogeometric elements are of special interest for complex geometries with piecewise smooth but curvilinear boundaries. To obtain locality in the detailed system, we use the saddle point approach and do not apply static condensation techniques. However within the reduced basis context, it is natural to eliminate the Lagrange multiplier and formulate a reduced eigenvalue problem for a symmetric positive definite matrix. The selection of the snapshots is controlled by a multi-query greedy strategy taking into account an error indicator allowing for multiple eigenvalues

    The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops

    Full text link
    It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy state, which is modelled by relaxation theory, i.e., helicity is conserved and the ratio of current to field becomes invariant within the loop. We apply the model so that all the loops within an ensemble achieve instability followed by energy-releasing relaxation. The result is a nanoflare energy distribution. Furthermore, we produce different distributions by varying the loop aspect ratio, the nature of the path to instability taken by each loop and also the level of radial expansion that may accompany loop relaxation. The heating rate obtained is just sufficient for coronal heating. In addition, we also show that kink instability cannot be associated with a critical magnetic twist value for every point along the instability threshold

    Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers

    Full text link
    We have investigated the response of the acoustoelectric current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low Temp. Phys. in honour of Prof. F. Pobel

    Towards an understanding of unique and shared pathways in the psychopathophysiology of AD/HD

    Get PDF
    Most attention deficit hyperactivity disorder (ADHD) research has compared cases with unaffected controls. This has led to many associations, but uncertainties about their specificity to ADHD in contrast with other disorders. We present a selective review of research, comparing ADHD with other disorders in neuropsychological, neurobiological and genetic correlates. So far, a specific pathophysiologicalpathway has not been identified. ADHD is probably not specifically associated with executive function deficits. It is possible, but not yet established, that ADHD symptoms may be more specifically associated with motivational abnormalities, motor organization and time perception. Recent findings indicating common genetic liabilities of ADHD and other conditions raise questions about diagnostic boundaries. In future research, the delineation of the pathophysiological mechanisms of ADHD needs to match cognitive, imaging and genetic techniques to the challenge of defining more homogenous clinical groups; multi-site collaborative projects are needed. © Blackwell Publishing Ltd
    • 

    corecore