697 research outputs found

    On the Evolved Nature of CK Vul

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/381.html Copyright ASPCK Vul was classified as the oldest observed nova. Recent studies have proven however, that CK Vul cannot be unambiguously classified as any known kind of eruptive variable. We present the optical and radio observations of the remnants of the eruption of CK Vul in the year 1670 in order to discuss possible scenarios for this object. We have measured the proper motion which proves that the nebula is attributed to the star observed during its 1670−1672 brightening. A large bipolar nebula of 70 arcsec is discovered in a deep Hα image. Radio observations reveal a barely resolved source placed in the expansion center of the ejecta

    Filling historical data gaps to foster solutions in marine conservation

    Get PDF
    Ecological data sets rarely extend back more than a few decades, limiting our understanding of environmental change and its drivers. Marine historical ecology has played a critical role in filling these data gaps by illuminating the magnitude and rate of ongoing changes in marine ecosystems. Yet despite a growing body of knowledge, historical insights are rarely explicitly incorporated in mainstream conservation and management efforts. Failing to consider historical change can have major implications for conservation, such as the ratcheting down of expectations of ecosystem quality over time, leading to less ambitious targets for recovery or restoration. We discuss several unconventional sources used by historical ecologists to fill data gaps - including menus, newspaper articles, cookbooks, museum collections, artwork, benthic sediment cores - and novel techniques for their analysis. We specify opportunities for the integration of historical data into conservation and management, and highlight the important role that these data can play in filling conservation data gaps and motivating conservation actions. As historical marine ecology research continues to grow as a multidisciplinary enterprise, great opportunities remain to foster direct linkages to conservation and improve the outlook for marine ecosystems

    Characterizing neural coding performance for populations of sensory neurons: comparing a weighted spike distance metrics to other analytical methods

    Get PDF
    The identity of sensory stimuli is encoded in the spatio-temporal patterns of responses of the encoding neural population. For stimuli to be discriminated reliably, differences in population responses must be accurately decoded by downstream networks. Several methods to compare patterns of responses have been used by neurophysiologists to characterize the accuracy of the sensory responses studied. Among the most widely used analyses, we note methods based on Euclidean distances or on spike metric distances. Methods based on artificial neural networks and machine learning that recognize and/or classify specific input patterns have also gained popularity. Here, we first compare these three strategies using datasets from three different model systems: the moth olfactory system, the electrosensory system of gymnotids, and leaky-integrate-and-fire (LIF) model responses. We show that the input-weighting procedure inherent to artificial neural networks allows the efficient extraction of information relevant to stimulus discrimination. To combine the convenience of methods such as spike metric distances but leverage the advantages of weighting the inputs, we propose a measure based on geometric distances where each dimension is weighted proportionally to how informative it is. We show that the result of this Weighted Euclidian Distance (WED) analysis performs as well or better than the artificial neural network we tested and outperforms the more traditional spike distance metrics. We applied information theoretic analysis to LIF responses and compared their encoding accuracy with the discrimination accuracy quantified through this WED analysis. We show a high degree of correlation between discrimination accuracy and information content, and that our weighting procedure allowed the efficient use of information present to perform the discrimination task. We argue that our proposed measure provides the flexibility and ease of use sought by neurophysiologists while providing a more powerful way to extract relevant information than more traditional methods

    Physical Characterization of an Unlensed, Dusty Star-forming Galaxy at z = 5.85

    Get PDF
    We present a physical characterization of MM J100026.36+021527.9 (a.k.a. "Mambo-9"), a dusty star-forming galaxy (DSFG) at z = 5.850 \ub1 0.001. This is the highest-redshift unlensed DSFG (and fourth most distant overall) found to date and is the first source identified in a new 2 mm blank-field map in the COSMOS field. Though identified in prior samples of DSFGs at 850 \u3bcm to 1.2 mm with unknown redshift, the detection at 2 mm prompted further follow-up as it indicated a much higher probability that the source was likely to sit at z > 4. Deep observations from the Atacama Large Millimeter and submillimeter Array (ALMA) presented here confirm the redshift through the secure detection of 12CO(J = 6\u21925) and p-H2O (21,1 \u2192 20,2). Mambo-9 is composed of a pair of galaxies separated by 6 kpc with corresponding star formation rates of 590 M o\u2d9 yr-1 and 220 M o\u2d9 yr-1, total molecular hydrogen gas mass of (1.7 \ub1 0.4) 7 1011 M o\u2d9, dust mass of (1.3 \ub1 0.3) 7 109 M o\u2d9, and stellar mass of (3.2-1.5+1.0) 7 109 M o\u2d9. The total halo mass, (3.3 \ub1 0.8) 7 1012 M o\u2d9, is predicted to exceed 1015 M o\u2d9 by z = 0. The system is undergoing a merger-driven starburst that will increase the stellar mass of the system tenfold in \u3c4 depl = 40-80 Myr, converting its large molecular gas reservoir (gas fraction of 96-2+1) into stars. Mambo-9 evaded firm spectroscopic identification for a decade, following a pattern that has emerged for some of the highest-redshift DSFGs found. And yet, the systematic identification of unlensed DSFGs like Mambo-9 is key to measuring the global contribution of obscured star formation to the star formation rate density at z \u2a86 4, the formation of the first massive galaxies, and the formation of interstellar dust at early times ( 721 Gyr)
    corecore