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Ecological data sets rarely extend back more than a few decades, limiting our understanding of envi-
ronmental change and its drivers. Marine historical ecology has played a critical role in filling these data
gaps by illuminating the magnitude and rate of ongoing changes in marine ecosystems. Yet despite a
growing body of knowledge, historical insights are rarely explicitly incorporated in mainstream con-
servation and management efforts. Failing to consider historical change can have major implications for
conservation, such as the ratcheting down of expectations of ecosystem quality over time, leading to less
ambitious targets for recovery or restoration. We discuss several unconventional sources used by his-

Keywords: . N . . .
Coastal management torical ecologists to fill data gaps — including menus, newspaper articles, cookbooks, museum collec-
Fisheries tions, artwork, benthic sediment cores — and novel techniques for their analysis. We specify

opportunities for the integration of historical data into conservation and management, and highlight the
important role that these data can play in filling conservation data gaps and motivating conservation
actions. As historical marine ecology research continues to grow as a multidisciplinary enterprise, great
opportunities remain to foster direct linkages to conservation and improve the outlook for marine

ecosystems.
© 2015 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Our oceans have undergone extensive changes as a result of
human influence, and consequently we are forced to manage ma-
rine ecosystems relative to shifted environmental baselines
(Dayton, 1998; Jackson et al., 2001; Pauly, 1995; Roberts, 2012). In
many regions human interaction with the marine environment
originated hundreds, thousands or even tens of thousands of years
before record keeping began (Pandolfi et al, 2003; Rick and
Erlandson, 2008; Roberts, 2003). Whilst access to the marine
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environment and our ability to monitor the oceans has been
spurred by technological innovations, such as SCUBA and remotely
operated video technology, by the time these advances occurred
many ecosystems had already been altered by human activities
(Thrush and Dayton, 2002; Thurstan et al., 2014). These temporal
gaps in our knowledge are significant and create uncertainties
about the extent to which humans have influenced changes in
marine ecosystems, particularly as our activities have expanded
and intensified.

Where long-term data describing ecological change have been
limited or absent, researchers have utilised alternative approaches
to fill gaps in our understanding of past change. For example, hind-
casting estimates are usually extrapolated from existing time series
data, together with contemporary production estimates or life-
history parameters, and can provide insights such as the theoret-
ical number of individuals a system can support (Jennings and
Blanchard, 2004; Marsh et al., 2005). Patterns of genetic variation

0964-5691/© 2015 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://core.ac.uk/display/81129938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:r.thurstan@uq.edu.au
mailto:lemcclen@colby.edu
mailto:Larry.Crowder@stanford.edu
mailto:jd2977@columbia.edu
mailto:jd2977@columbia.edu
mailto:jkittinger@conservation.org
mailto:phil.levin@noaa.gov
mailto:callum.roberts@york.ac.uk
mailto:j.pandolfi@uq.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ocecoaman.2015.04.019&domain=pdf
www.sciencedirect.com/science/journal/09645691
http://www.elsevier.com/locate/ocecoaman
http://dx.doi.org/10.1016/j.ocecoaman.2015.04.019
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.ocecoaman.2015.04.019
http://dx.doi.org/10.1016/j.ocecoaman.2015.04.019

32 R.H. Thurstan et al. / Ocean & Coastal Management 115 (2015) 31—40

have been used to infer past effective population sizes for some
marine species (e.g., Alter et al., 2007), although these can only
provide a single past value, rather than information on population
trajectories over time. Space for time approaches have also been
used to provide insights into past ecosystems (Hawkins and
Roberts, 2004; Pickett, 1989). In these cases remote areas are
viewed as a virtual ‘time machine’ and give us glimpses as to how
the seas looked before extensive anthropogenic changes. Useful
information on past trophic structuring of communities can be
gained from the space for time approach (Barott et al., 2010; Sandin
and Sala, 2012). However, the use of reference ecosystems over-
looks changes that may have happened in any one place or to wide-
ranging species, and even ‘so-called’ pristine reference marine
systems will be impacted by global issues such as climate change
and ocean acidification. Furthermore, the only available reference
systems (i.e., those least impacted by human activities) are usually
remote oceanic systems that are dissimilar to continental coasts
and shelf systems, and hence are not suitable controls for the lo-
cations that have been the most altered by humans (Sandin et al.,
2008). Importantly, few of these approaches are detailed enough
to provide an understanding of the trajectories and drivers of past
change, and often start with the assumption that contemporary and
historical ecosystems are comparable (Lotze and Worm, 2009).

In recent years a multidisciplinary enterprise — marine histori-
cal ecology — has developed to produce data to fill gaps in our
knowledge of the levels of change and long-term dynamics
exhibited by marine ecosystems. It can be described as “the study of
past human—environmental interactions in coastal and marine
ecosystems and the ecological and social outcomes associated with
these interactions” (Kittinger et al., 2015). This field of research
spans multiple disciplines, including historical, social, ecological,
archaeological and palaeontological disciplines, to unravel tempo-
ral changes in marine ecosystems ranging from decades to tens of
thousands of years (Coll et al., 2014; Erlandson et al., 2008; Lotze
et al., 2006; Pandolfi and Jackson, 2006). Historical data sources
have a number of unique features that are of value to contemporary
conservation and management. Historical data can improve our
understanding of past system dynamics, enabling us to determine
whether contemporary systems are acting within the historical
range of variability exhibited prior to large-scale human impacts
(Morgan et al., 1994). Historical data, if detailed enough, may also
provide information on the rate and trajectory (i.e., linear, non-
linear) of temporal change. Long-term data can also assist in
unravelling the mechanisms driving these changes, and whether
the major driving forces have altered over time (Pickett, 1989). Such
data may also allow us to identify if contemporary communities are
‘novel’, that is, they have not previously occurred in the historical
record.

Under the framework of marine historical ecology, researchers
from across the world have amalgamated data on different
geographical and oceanic regions, from temperate to tropical cli-
mates (Pandolfi et al., 2003; Reise et al., 1989), and benthic to
pelagic systems (Baum and Worm, 2009; Edgar and Samson, 2004).
Over the last 15 years, several synthetic papers (e.g., Jackson et al.,
2001; Pandolfi et al., 2003), popular and academic books (e.g.,
Jackson et al., 2011; Kittinger et al., 2015; Roberts, 2007) and a
global research initiative, the History of Marine Animal Populations
(Holm et al., 2010; Schwerdtner Manez et al., 2014), have initiated a
surge of interest in the collation and analysis of historical data on
marine ecosystems, aiding our understanding of long-term changes
in the oceans and the roles that humans have played in driving
these changes. In many cases researchers have found that degra-
dation, or even fundamental alterations of marine ecosystems, have
occurred as a result of human activities such as fishing, pollution or
the introduction of non-native species (Bax et al., 2003; Bowen and

Valiela, 2001; Roberts, 2007). Historical ecology has also been an
important component in shaping debate about the changing role of
conservation in an increasingly human-dominated world (Kueffer
and Kaiser-Bunbury, 2014; The Breakthrough Institute, 2012).

Although there is much potential for historical data to
contribute to conservation data gaps, these data are not without
their challenges. These include disparate sources or incomplete
data, historical data collection methodologies that may be of
questionable reliability or where analytical robustness is uncertain,
or where data reporting is subject to unknown biases (issues that
are not just confined to historical data sets). Yet if these challenges
are addressed, the insights afforded by a greater understanding of
historical conditions can alter how scientists and the public
perceive the condition of our natural environment today, with
implications for how conservation goals are set and prioritised
(Caro et al., 2012; Kueffer and Kaiser-Bunbury, 2014).

In this paper we discuss the implications of historical data gaps
for conservation and management. We demonstrate that even in
situations where historical data are limited, information on past
trends can be uncovered when alternative, perhaps unconven-
tional, data sources are considered. We highlight innovative ap-
proaches or techniques that have provided novel insights into past
ecosystem dynamics. We then provide examples of how historical
data can be used to help address a range of conservation challenges.

2. Implications of historical data gaps for conservation

Historical data gaps contribute to shifting environmental base-
lines or cultural amnesia, described as social or institutional losses
in memory (Papworth et al., 2009). These shifted baselines can
ultimately lower ambitions for conservation if degraded states are
accepted as natural (Pauly, 1995). Targets to rebuild or restore
ecosystems or communities can only reflect what is known about
previous ecosystems and/or species abundance. Thus, a lack of
appreciation for how an ecosystem has changed can have major
implications for conservation and management.

Historical data have been used to illustrate changes in species
abundance, and commonly show that the magnitude of change
over long time scales is greater than contemporary data sets sug-
gest. One of the better-known examples of how historical data can
readjust our perspective of the productivity of past environments is
in the comparison of historical and contemporary cod (Gadus
morhua) biomass on Canada's Scotian Shelf (Rosenberg et al., 2005).
Contemporary analyses of cod biomass showed an increase from
1970 — the beginning of recent records — then a decrease from 1980
onwards. Alone, these data would suggest that targets for the
rebuilding of cod stocks be set to the 1980s level, for which indeed,
people have argued (Rosenberg et al., 2005). However, historical
data on individual vessel catch and effort during the mid-19th
century, when combined with population modelling, suggest that
total cod biomass during the 1980s — its contemporary peak — was
just 4% of the historical levels of cod on the Scotian Shelf alone
(Rosenberg et al., 2005). Similar examples where historical data
have uncovered past productivity that was much higher than
contemporary systems include the Adriatic Sea, where multidisci-
plinary investigations suggested that 98% of traditional marine
resources had been depleted to under half their previous abun-
dance (Lotze et al., 2011). In the Wadden Sea, historical sources
showed that many targeted species were severely reduced by the
early 20th century (Lotze, 2005), when fishery records began to be
kept.

Historical data have also been used to illustrate local extirpation
of a species or habitat. An example of how having a complete his-
torical record could lead to different conservation regimes can be
found when profound changes to the faunal composition of an area
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occurred before formal scientific data were collected. The giant
clam Hippopus hippopus occurs in Kiribati and other islands in the
South Pacific region but not in Fiji, and no written records exist to
provide evidence of its past presence there. However, the discovery
of new archeological evidence suggests that this species once
occurred on Fijian reefs, before becoming extinct in Fiji around 750
B.C,, in part due to anthropogenic exploitation (Seeto et al., 2012).
Knowing that this clam was once part of the fauna of shallow
inshore Fijian reefs may help conservation biologists and govern-
ment officials reassess options for the suitability and development
of giant clam farms and clam restoration projects in this region
(Sulu et al., 2012).

Long-term studies also indicate that in some locations, high
abundances of low trophic level fishery species, such as shrimps,
prawns or shellfish, are a historical anomaly, facilitated by the
removal of their predators by earlier fisheries and habitat modifi-
cation by trawls and dredges (Brown and Trebilco, 2014; Parsons
et al., 2013). In the Gulf of Maine historical fisheries for finfish
such as cod and haddock (Melanogrammus aeglefinus) declined as a
result of fishing pressure, whilst lobster (Homarus americanus)
flourished in the absence of predators (Jackson et al., 2001; Steneck
etal,, 2011). A similar story has occurred in the Firth of Clyde, where
historical data show that a variety of finfish species once dominated
Clyde fisheries, but that since the 1980s a single species of lobster,
Nephrops norvegicus has been the mainstay of Clyde fishing com-
munities (Thurstan and Roberts, 2010).

This last example, whilst highlighting the important role that
historical data has to play in uncovering past ecosystem change,
demonstrates that the setting of contemporary conservation or
management targets are as much a social as an ecological decision.
Sustaining modern fisheries in the Gulf of Maine and the Firth of
Clyde rely on maintaining the present, altered state, while goals
that are based on historical knowledge of ecosystem structure and
function may call for more active restoration. Thus, even in cases
where these simplified ecosystems are less resilient to environ-
mental perturbations than historical communities (Howarth et al.,
2014; Schindler et al., 2010; Steneck et al., 2011), rebuilding systems
towards an earlier state can be ecologically, socially and economi-
cally difficult as stakeholders may prefer the societal and economic
benefits brought about by the modern ecosystem. However, in
these situations, a historical perspective may still be of use in
informing stakeholders and managers of the ecological potential for
rebuilding depleted fish stocks, thus enabling more informed de-
cisions to be made about the future of these ecosystems. In the case
of the Clyde, knowledge of changes in the composition of marine
communities as a result of fishing (Heath and Speirs, 2012) has
formed the basis of proposals that call for changes in the way in
which Clyde fisheries are managed, in particular, to restore past
diversity and resilience to inshore fisheries (SIFT, 2015).

3. Using novel data sources to foster solutions to historical
data gaps

Monitoring data and government records are not always avail-
able to fill gaps in our understanding of past ecosystem change. In
these cases researchers have turned to unconventional sources of
data to foster solutions to historical data gaps. In Hawaii, for
example, evidence suggests that Native Hawaiians fished coral reefs
intensively for centuries prior to European contact (Friedlander
et al., 2013; Kittinger et al., 2011), but over the last century
fundamental changes in fishery composition occurred, including a
switch from a reliance on reef fish to reliance on pelagic species
(McClenachan and Kittinger, 2012). However, formal quantitative
annual commercial fisheries data for Hawaii only exist from the
1940s onwards, creating a large data gap that requires innovative

approaches to untangle long-term fisheries trends (Friedlander
et al, 2015; Shackeroff et al, 2011). Decorative seafood menus
gathered by collectors were used to fill this particular data gap,
pinpointing the timing of change in exploitation targets from reef
fish to pelagic fish and confirming high reef fish consumption in the
early 20th century (Van Houten et al., 2013). Over longer time
scales, archaeological findings, fisheries landings data, and per
capita consumption estimates were used to reconstruct historical
fisheries yield for Hawaii across seven centuries. This reconstruc-
tion demonstrates that overall yield was likely maintained over the
four centuries prior to the arrival of Europeans, despite high pre-
European human population densities (Longenecker et al., 2014;
McClenachan and Kittinger, 2012). That fishing levels were main-
tained under these conditions has been linked to the effective
enforcement of a range of management measures, including
restricted harvesting of reef species and reef areas and regulation of
fishing gear, with implications for management of heavily targeted
reef fisheries today (Kittinger et al., 2011).

Likewise in Australia, state landings data for finfish began to be
collated after the Second World War, but references prior to this
period suggest that substantial levels of fishing occurred many
decades prior to the start of official documentation, including the
capture of large numbers of fish by recreational fishers (Thurstan
et al., in press). Government reports from this period do not pro-
vide catch and effort data, but alternative sources of archival data,
such as newspapers and popular articles, have been found in some
cases to contain detailed information on these developing fisheries.
In Queensland, recreational fishing trips for snapper (Pagrus aur-
atus) — today an iconic recreational fishery — began being under-
taken during the late 19th century, with the catch commonly
recorded in local newspapers. Application of statistical approaches
to the quantitative data and qualitative narratives from these
sources provided insights into catch rates during the early devel-
opment of the fishery (Thurstan et al., in press).

In the United States, historical menus and cookbooks have been
used to demonstrate changes in consumer preferences over time,
providing insights into how societal preferences or consumer de-
mand can shape exploitation patterns (Hall and Camhi, 2012; Levin
and Dufault, 2010). Art and photographs have also successfully
provided insights into historical fish availability, changes in relative
abundance or size, as well as changes in cultural phenomena such
as trophy fishing (Guidetti and Micheli, 2011; McClenachan, 2009),
whilst historical admiralty charts and surveys have been used to
estimate changes in the extent and biomass of oyster reefs in es-
tuaries throughout the United States, from ca. 1880 to the present
day (Zu Ermgassen et al., 2012). Museum collections are also useful
repositories of information on past biodiversity. Ancient shark
toothed weapons from Kiribati were analysed to identify the spe-
cies of sharks used in the production of these weapons. Comparison
with contemporary species lists led to the discovery that two
species of sharks had been extirpated from these waters before the
first formal scientific surveys took place (Drew et al., 2013).

Whilst historical data gaps exist for fisheries and fish assem-
blages, our lack of knowledge of long-term change in marine hab-
itats is even more acute. Regular monitoring of marine ecosystems,
even shallow water systems such as coral reefs, rarely commenced
prior to the 1980s. Without such data, it is often difficult to unravel
the impact of cumulative stressors from the natural dynamics
exhibited by such systems, or to know whether the system we
observe today is fundamentally different from its historical coun-
terpart. The application of high-precision dating tools such as
Uranium-series thermal ionisation mass spectrometry and multi-
collector inductively coupled plasma mass spectrometry to coral
reef matrix cores have provided an accurate chronology on the
timing of historical mortality events in coral communities of the
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Great Barrier Reef, Australia, prior to monitoring activities. The
development of these innovative technologies has been critical to
driving new discoveries of historical dynamics within the Great
Barrier Reef ecosystem, for assessing the impact of industrial
development on its inshore reef systems and for informing dis-
cussion on recovery goals (Clark et al., 2014; Lybolt et al., 2011). For
example, Roff et al. (2013) used these techniques to identify a
collapse in Acropora assemblages in the central Great Barrier Reef
during the middle 20th century. Whilst more recent declines in
coral cover have been ascribed to acute disturbance events such as
bleaching episodes, cyclones and crown-of-thorns starfish (De'ath
et al., 2012), the long-term stability exhibited by these assem-
blages over centennial time scales and the timing of their decline
suggested that the ultimate cause of the collapse was due to pro-
longed increases in sedimentation and nutrient loading caused by
land-use changes after European settlement (Roff et al., 2013).

Whilst our understanding of long-term change is still limited,
these examples — while not exhaustive — demonstrate that sources
exist to close these data gaps and that unconventional data sources
can be used to demonstrate changes in marine ecosystems over
time (Fig. 1).

4. Integrating historical data into contemporary conservation
and management

The emergence of marine historical ecology as an interdisci-
plinary field of research and the continuing discovery and
engagement of historical data reveals the value of these ap-
proaches to meet current conservation challenges (Kittinger et al.,
2015). In this section, we provide specific examples to show that
integration of historical data to address real-world management
issues can be achieved.

4.1. Setting baselines for restoration

The first, and most obvious example of the use of historical data
is in the setting of restoration goals. In the Chesapeake Bay, data on
the location and extent of historical oyster (Crassostrea virginica)
beds, sourced from late 19th and early 20th century surveys have
been used to inform restoration targets (U.S. Army Corps of
Engineers, 2012). Whilst it is acknowledged that the historical
baseline upon which restoration goals are based does not constitute
pristine conditions, they have provided a benchmark against which
restoration progress can be assessed (U.S. Army Corps of Engineers,
2012). Oysters were once a valuable species in the Chesapeake, but
centuries of habitat degradation and overharvesting resulted in
their reduction to <1% of former abundance (Wilberg et al., 2011).
Despite the decline their cultural value remained, which has been
important in mobilising community support for large-scale resto-
ration efforts (U.S. Army Corps of Engineers, 2012). Similarly, in
Maine, restoration of habitat connectivity for anadromous fish has
resulted in the resurrection of historical alewife (Alosa pseudohar-
engus) fisheries, which have been inactive for 200 years in some
locations. These fisheries provide economic and social benefit to
communities, motivating community interest in restoration and
creating positive feedbacks between ecological restoration, com-
munity engagement and local pride (McClenachan et al., in review).
The maintenance of cultural value is important, as in other coun-
tries not only have once-extensive oyster beds been lost, but the
cultural and ecosystem values associated with these have also
disappeared from collective memory (Alleway and Connell, 2015;
Thurstan et al., 2013). This loss of awareness of the past presence
of these species, together with fundamental changes in the
benthos, make future restoration efforts less likely.

Fig. 1. Examples of unconventional data sources and techniques used in historical ecology research. (a) Percussion core sampling of an inshore coral reef in the Great Barrier Reef
(courtesy of The National Environmental Research Program Project 1.3), (b) core section resulting from percussion core sampling (courtesy of M. Lepore), (c) multi-collector
inductively coupled plasma mass spectrometer to conduct U-series dating of coral fragments sourced from cores (courtesy of J. Zhao), (d) catch from a 1947 Queensland fishing
trip (courtesy of Heritage Library, Sunshine Coast Council), (e) early 20th century recreational fishing publication (Welsby, 1905) and (f) close up of a shark-toothed knife from the

Gilbert Islands (courtesy of J. Drew).
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4.2. Developing long-term metrics for monitoring and evaluation

If we are to accurately monitor long-term change, appropriate
metrics are required. The degree to which metrics can be stan-
dardized across time periods and data types is essential to consider
when attempting the integration of contemporary and historical
data sets. A lack of resolution in many historical data sets often
means that comparisons with more detailed contemporary data are
difficult to achieve (McClenachan et al., 2012a). However, the
adoption of indicators that require either broad-scale data or a
simple index of change is often a viable solution to standardising
data sources across long time periods. Such indicators are begin-
ning to be adopted by marine policies such as the European Marine
Strategy Framework Directive (MSFD) and the European Habitats
Directive, which require the setting of reference conditions against
which current ecological status can be compared (Borja et al., 2012;
Raicevich, 2013). For example, the Large Fish Indicator is an index,
applied to demersal fish communities in the North Sea, that de-
scribes the proportion of fish by weight in the sample >40 cm in
length (Greenstreet et al., 2011). Such size-based indices reflect the
effects of fishing pressure upon fish populations, and can indicate
the sustainability of fishing effort. A comparison of survey data
undertaken between the 1920s and 1980s showed no significant
variation in the proportion of large fish in the catch over time
(Greenstreet et al., 2012). After this period the proportion of large
fish declined, leading managers to ascribe the 1980s as a suitable
reference period upon which recovery targets should be based. It is
important to note that in this context, historical reference condi-
tions are not intended to reflect a pristine ecosystem. Indeed, by the
1920s major ecosystem change had already occurred in benthic
marine ecosystems, including declines of large elasmobranchs
(Dulvy and Reynolds, 2002) and losses in productivity (Thurstan
et al., 2010, 2014). Instead, historical data were used in this
context towards identifying sustainable levels of exploitation (Rice
et al., 2012; Zampoukas et al., 2014).

A second issue to consider when developing long-term metrics
is the modern decision-making framework. Even where historical
information is readily available, contemporary assessment criteria
or decision-making frameworks may not be set up to maximise the
use of historical data. For example, IUCN decline criteria are limited
to 10 years or three generations, whichever is longer. This short
time-scale led to a down listing of two species of sawfish from
critically endangered to endangered because the greatest declines
occurred before the period to which IUCN criteria are applied, not
because the conservation status of the two species had improved
(Dulvy et al., in press). Similarly, data requirements for formal
fisheries assessment methods commonly preclude disparate or
incomplete historical data from being incorporated (Alexander
et al.,, 2011; McClenachan et al., 2012a). Despite these issues,
some types of historical data may be more readily incorporated
than others, particularly if spatial expansion or changes in fishing
effort can be estimated. Indices of relative change are an important
component of fisheries assessments, and historical data that pro-
vide information on relative trends over time could be used to
extend existing time series or be incorporated as separate model
inputs. Such data include time series of catch rates, total landings
and biomass estimates (MacKenzie et al., 2011; Poulsen et al., 2007;
Rosenberg et al., 2005). Alexander et al. (2011) suggested ‘catch
density’ — catch per area fished — as a potential metric for over-
coming the problem of integrating historical data into stock as-
sessments. Using three examples across different spatial and
temporal scales, they showed that catch density could be calculated
from a range of disparate data sources, including anecdotal archival
data, and successfully compared with contemporary data. In all
cases, the use of this index provided quite different perspectives

than catch data alone.

The previous examples show that there are a number of
different metrics that could be used to compare contemporary and
historical data. However, even data that are not of sufficient reso-
lution to be directly incorporated into quantitative models may still
be of importance to the stock assessment process, for example, by
endorsing or disputing model assumptions, such as the point in
time where virgin biomass is assumed (Thurstan et al., in press).
Furthermore, whilst formal assessments are the norm for indus-
trialised fisheries, this does not extend to the majority of fisheries
worldwide, which include many multi-species and small-scale
fisheries that cannot be assessed using conventional methods
(Friedlander et al., 2015). In the absence of formal survey and
population data, historical information such as abundance indices
and landings/catch history may be the only sources available to
inform managers of broad-scale trends (Friedlander et al., 2015).

4.3. Challenging ingrained paradigms

A common problem that arises from an absence of historical
data is the assumption that marine ecosystems (and their compo-
nents) are not being substantially altered or degraded by human
impacts (Bolster, 2006). Often, the burden of proof is upon scien-
tists to demonstrate that human activities cause damage, such that
a lack of data suggests a lack of impact (Royal Commission, 2005;
Zeller et al., 2011). In the marine environment, this assumption
has led to continued degradation in the form of pollution, habitat
loss and overexploitation.

For example, fisheries were historically perceived as abundant
and largely resilient to human pressure (Garstang, 1900; Huxley,
1883), the ocean was open access, and fishing was seen as a right
(McClenachan, 2013; Russ and Zeller, 2003). These factors have set
a precedent where in the absence of data, damaging activities are
allowed to occur unobstructed (Brooks et al., 2014; Dayton, 1998). A
lack of data, especially on the initial impacts of fishing, which
generally have a more pronounced effect than impacts on already
heavily altered systems (Jackson et al., 2001; Thurstan et al., 2014),
supports this paradigm. Ecological risk assessments consider the
potential risks of human activities to the functioning of marine
ecosystems, and are often reliant upon information sourced from
published material or expert knowledge (Pears et al., 2012). How-
ever, the information base for many marine species remains
limited, preventing such studies from adequately assessing lesser-
known or more cryptic species. McClenachan et al. (2012b) docu-
mented a link between data and conservation action for marine
species; less charismatic groups of species have greater data de-
ficiencies, which may be perceived as a lack of risk and can translate
to a lack of conservation action.

Furthermore, when stakeholders are unable to perceive the
extent of past change, they may be less likely to support actions to
improve ecosystem status (Scyphers et al., 2014). Often, individuals
perceive their own fishing activities as low impact, but fail to
appreciate the influence of increasing numbers of fishers
(McClenachan, 2013). For example, Coleman et al. (2004) showed
that recreational fishers accounted for up to 64% of the take for
species of concern in the Gulf of Mexico, while Shiffman et al.
(2014) showed that trophy fishing removes the largest, most
fecund individuals, with 85 species listed in the International Game
Fishing Association world record guide classed as threatened by the
IUCN Red List of Species (Shiffman et al., 2014). Stakeholders may
also be unaware of ecological degradation across long periods of
time, particularly where change has occurred across generations,
the expansion of fisheries to greater depths and further offshore, or
technological development have masked declines (Swartz et al.,
2010). In cases where entrenched paradigms or shifted baselines
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exist, a historical perspective can provide important data to inform
local communities and decision-makers of the magnitude of
changes that have occurred. Communicating the experience of
older fishers can also play an important role in combating such
paradigms, as older fishers are likely to have experienced more
striking declines than younger fishers (Beaudreau and Levin, 2014;
Saenz-Arroyo et al., 2005).

4.4. Recognising and responding to cumulative stressors

The impacts of cumulative stressors over time also commonly
remain unaccounted for, either because the potential synergies
acting among multiple stressors are not recognised, or because they
are challenging to assess and manage using existing protocols. For
example, despite major water regime changes occurring over a 150
year period as land was cleared for crops and pasture, the chronic
effects of this pollution on the inshore reefs of the Great Barrier
Reef went undocumented until the 1980s, with the resultant belief
that declines in inshore reefs were largely due to acute disturbances
such as cyclones or coral bleaching events (Brodie et al., 2001; Roff
et al., 2013). Historical perspectives have aided our understanding
of the mechanisms driving these changes, and emphasise that
impacts should not be managed in isolation. Species with broad
geographical distributions may also be inadequately protected by
piecemeal conservation efforts that fail to recognise how cumula-
tive stressors have impacted historical and contemporary pop-
ulations. For example, sawfish were once widespread but are
possibly the most endangered group of marine fishes in the world
today as a result of their association with threatened coastal habi-
tats, low intrinsic rates of population increase, the high value of
their fins, and ease of catchability (Dulvy et al., in press). However,
these declines are difficult to assess because of the species' large
range sizes and long history of human interaction. Only when a
global assessment incorporating historical information was un-
dertaken was the scale of change to sawfish populations able to be
fully comprehended. Comparisons of historical and contemporary
data gathered for this assessment suggested that sawfishes have
been extirpated from 80% of their historical range (Dulvy et al., in
press).

As described previously, some high value, low trophic level
fisheries today are historical anomalies. Similarly, in some ecosys-
tems transitions to species compositions, interactions and func-
tions unprecedented in the historical record have been observed
(Graham et al., 2014; Hobbs et al., 2009). However, whilst these
transitions often appear to occur over short time scales or as the
result of an acute disturbance event, they can be the result of many
years of cumulative stressors. For example, coral reef ecosystems in
the Caribbean shifted quite suddenly from being dominated in the
1980s by coral (Acropora cervicornis and Acropora palmata) to
macroalgae (Hughes et al., 2013). Whilst a mass mortality of the
algal grazing urchins (Diadema antillarum) provided a proximate
cause of this switch, and recent events including bleaching epi-
sodes helped to maintain coral reefs in algal dominated states,
longer-term trends suggested it was the slow degradation resulting
from centuries of fishing pressure that set the stage for the regime
change witnessed (Hughes et al., 2013; Jackson et al., 2001). In-
teractions between fishing and climate effects have also been
proposed as the cause of the dramatic shifts witnessed in demersal
fish species composition in the northwest Atlantic, where large
benthic predators such as cod (G. morhua) collapsed and forage fish
and macro invertebrates considerably increased (Benoit and Swain,
2008; Choi et al., 2004). However, recent research suggests that
these systems may be slowly returning to a community structure
once more dominated by cod and other large benthic fish (Frank
et al., 2011). These examples suggest that, if we are able to

recognise when cumulative impacts may be leading an ecosystem
towards regime change, a window of opportunity potentially exists
within which progress towards reversing these shifts could be
made (Hughes et al., 2013). In these cases, a historical perspective is
avaluable tool to help recognise a) when ecosystem components or
dynamics are acting outside of their historical range of variability,
and b) the cumulative stressors and their social drivers that act
together to create regime shifts, but which, on their own, may not
signal a transitional change.

5. Acknowledging the role of qualitative sources in filling
data gaps

Historical ecology research — including many of the examples
we have highlighted — often focus upon quantitative findings, such
as changes in catch per unit of fishing effort, changes in biomass or
areal extent of a habitat, or differences in the average size or
abundance of fish over time. However, in many cases precise in-
formation is not always required to address a particular knowledge
gap and to assess whether fundamental changes have occurred that
should trigger conservation action (Hall-Arber et al., 2009; Hicks
et al,, 2014). The loss of phenomena such as spawning aggrega-
tions (Aguilar-Perera, 2006) or the timing of fundamental alter-
ations to benthic communities (Ames, 2004; Thurstan et al., 2013)
can be addressed qualitatively, providing enough information for
management action to be taken. Likewise, narratives can provide
qualitative indications of past abundance, which, for species that
are particularly vulnerable to human activities, may be sufficient
evidence to show that major declines have occurred (Saenz-Arroyo
et al., 2006; Williams et al., 2010). For example, Sdenz-Arroyo et al.
(2006) synthesised descriptions of the Gulf of California and its
marine wildlife by 16th—19th century travellers. In contrast to
present-day populations, these historical sources consistently
described high abundances of large, vulnerable marine species
including whales, turtles, oysters and large fish. Significantly, ex-
amination of historical sources raised the possibility that the highly
endangered vaquita (Phocoena sinus) was once widely distributed
throughout the Gulf of California, a proposition that had not pre-
viously been considered by scientists (Sdenz-Arroyo et al., 2006).

Often qualitative historical data comes in the form of local or
traditional ecological knowledge (Berkes et al., 2000; Drew, 2005).
This kind of knowledge can be critical for data-poor areas
(Johannes, 1998), where formal quantitative surveys are not pre-
sent. For example, Aguilar-Perera (2006) described the loss of a
spawning aggregation for Nassau Grouper (Epinephelus striatus) off
the southern Mexican Caribbean coast, which had been part of the
local knowledge of fishers for at least the past 50 years. Similarly,
Ames (2004) used historical testimony and fisher knowledge to
identify long-lost cod spawning grounds in the Gulf of Maine,
highlighting the necessity of minimising further losses of locally
adapted sub-populations. Traditional and local ecological knowl-
edge of Alaska Native subsistence and commercial fishers was also
used to explore observations of ecological changes in Cook Inlet
over time (Carter and Nielson, 2011). Interviews illustrated addi-
tional potential environmental and human activity-related threats
to the Cook Inlet beluga whale population that had not been
identified in formal management plans (Carter and Nielson, 2011).
In these examples, qualitative historical data provided valuable
information to plug existing data gaps, and identified additional
conservation priorities that were not recognised using contempo-
rary data alone.

Management decisions are often made within a contested policy
environment where science is but one facet of decision-making. In
these cases, qualitative historical data have an important role to
play in focussing management priorities. For example, historical
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narratives may have the power to engage stakeholders — an
increasingly integral component of the decision-making process —
to a greater degree than quantitative research with complex model
outputs or highly specialized scientific methodologies (Golden
et al,, 2014; Lotze and McClenachan, 2013). Alternatively, stake-
holders may bring their own experiences and narratives to the
process, thereby effecting change. Bringing in data collected by
citizen scientists, oral narratives or originating in traditional
ecological knowledge may also allow for participation by groups
marginalized by more formal science methodologies.

Narrative descriptions of change may also be particularly
effective when dealing with problems that are politicised, at which
point, science is rarely the strongest influence on decisions (Gelcich
etal., 2009; O'Leary et al., 2011). Moreover, whilst stakeholders may
be aware of changes in their local environment, these perceptions
are usually intertwined with multiple other factors such as societal
values, resource dependency or poverty (Scyphers et al., 2014), all
of which contribute to a perception of their environment that is
difficult to represent using quantitative data alone. In these cases,
ecological knowledge is not only useful to understand the past and
present ecology of ecosystems, but is also an important source to
help us understand coupled cultural and biodiversity losses (e.g.,
Drew, in press). Historical research has also demonstrated that
there are many diverse ways of perceiving the environment
(Shackeroff et al., 2011). Often, causal mechanisms of change may
be disputed among stakeholders, but all will agree that change has
occurred (Scyphers et al., 2014; Shackeroff et al., 2011). In these
cases, historical narratives can work towards unifying policies by
highlighting the similarities in stakeholders' experiences rather
than emphasising differences of opinion.

6. Discussion

Historical ecology and related studies have demonstrated that
human-induced ecological change has occurred over long periods
of time (hundreds to thousands of years). In many cases, these
changes have been far more dramatic than suggested by contem-
porary data alone (Pandolfi et al., 2003; Roberts, 2007; Rosenberg
et al.,, 2005). In this article we describe the implications of histor-
ical data gaps for conservation and management, how unconven-
tional sources continue to improve our understanding of data gaps,
and the value and ongoing challenges of integrating historical data
into contemporary conservation practise. By improving our un-
derstanding of past ecosystems, historical data can be used to set
more ambitious conservation targets and highlight where conser-
vation action is required. Novel historical research has successfully
highlighted the myriad data sources and techniques that exist to
inform our understanding of past change. Even though pristine
conditions are rarely feasible or aspired to, a historical perspective
can still be of value in deciding appropriate benchmarks for con-
servation or recovery objectives, and in measuring the success of
conservation actions.

In particular, it is important to identify and reduce historical
data gaps in order to calibrate ambitions for conservation, and the
opportunities historical perspectives offer for more effective man-
agement. While lack of knowledge often hampers action, practi-
tioners in this field must rise to the challenge of better integrating
insights from historical ecology into management. The shift to
alternative marine management paradigms, such as the movement
from single species to ecosystem-based management (EBM), pro-
vides additional avenues for the incorporation of historical per-
spectives. Moreover, the requirement for EBM to account for
impacts to the wider ecosystem (Pikitch et al., 2004) requires
frameworks and methodologies that are able to integrate infor-
mation sourced from varying temporal and spatial scales. Bayesian

networks, for example, seem particularly well suited for integrating
disparate data sources, such as those typically supplied by historical
ecology studies, and are being increasingly applied in ecological
studies and environmental decision-making (Aderhold et al., 2012;
Ellison, 1996). Public engagement with historical ecology research
and results may also help to empower local communities to set and
achieve conservation goals. This can be particularly effective when
the species or environment under scrutiny is high on the political
agenda (e.g., the potential listing of the Great Barrier Reef World
Heritage Area as ‘In Danger’). Finally, moving beyond numbers is
necessary to fully realise the value of historic data. Qualitative data
sourced from narratives, pictures or photographs can present
strong messages to stakeholders and the general public, and
potentially have greater leverage in politicised contexts than
quantitative outputs from shorter time periods.

The emergence of marine historical ecology occurred only
recently, and several decades after its terrestrial equivalent (Meyer
and Crumley, 2011), but its subsequent growth has been charac-
terised by a highly creative multidisciplinary fusion of perspectives
that continue to broaden and deepen our understanding of both
past and present. As additional data sources are found and tech-
niques for analysis developed, and as this field of research con-
tinues to grow in impact and acceptance among both scientific and
practitioner communities, it will continue to transform our per-
ceptions of marine ecosystems. Working to apply these findings to
conservation and management frameworks is the next critical step
towards improving the outlook for marine ecosystems and the
benefits they provide to people worldwide.
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