6,894 research outputs found

    Microdetermination of urea in urine using p-dimethylaminobenzaldehyde /PDAB/

    Get PDF
    Adaptation of the p-dimethylaminobenzaldehyde method for determining urea concentration in urine is an improved micromechanical method. Accuracy and precision are satisfactory. This method avoids extra steps of deproteinizing or removing normal urinary chromogens

    Intelligent redundant actuation system requirements and preliminary system design

    Get PDF
    Several redundant actuation system configurations were designed and demonstrated to satisfy the stringent operational requirements of advanced flight control systems. However, this has been accomplished largely through brute force hardware redundancy, resulting in significantly increased computational requirements on the flight control computers which perform the failure analysis and reconfiguration management. Modern technology now provides powerful, low-cost microprocessors which are effective in performing failure isolation and configuration management at the local actuator level. One such concept, called an Intelligent Redundant Actuation System (IRAS), significantly reduces the flight control computer requirements and performs the local tasks more comprehensively than previously feasible. The requirements and preliminary design of an experimental laboratory system capable of demonstrating the concept and sufficiently flexible to explore a variety of configurations are discussed

    Flash of photons from the early stage of heavy-ion collisions

    Get PDF
    The dynamics of partonic cascades may be an important aspect for particle production in relativistic collisions of nuclei at CERN SPS and BNL RHIC energies. Within the Parton-Cascade Model, we estimate the production of single photons from such cascades due to scattering of quarks and gluons q g -> q gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter QED branching process plays the dominant role for photon production, similarly as the QCD branchings q -> q g and g -> g g play a crucial role for parton multiplication. We conclude therefore that photons accompanying the parton cascade evolution during the early stage of heavy-ion collisions shed light on the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure

    Deep Convolutional Neural Networks as strong gravitational lens detectors

    Full text link
    Future large-scale surveys with high resolution imaging will provide us with a few 10510^5 new strong galaxy-scale lenses. These strong lensing systems however will be contained in large data amounts which are beyond the capacity of human experts to visually classify in a unbiased way. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to the Strong Lensing challenge organised by the Bologna Lens Factory. It achieved first and third place respectively on the space-based data-set and the ground-based data-set. The goal was to find a fully automated lens finder for ground-based and space-based surveys which minimizes human inspect. We compare the results of our CNN architecture and three new variations ("invariant" "views" and "residual") on the simulated data of the challenge. Each method has been trained separately 5 times on 17 000 simulated images, cross-validated using 3 000 images and then applied to a 100 000 image test set. We used two different metrics for evaluation, the area under the receiver operating characteristic curve (AUC) score and the recall with no false positive (Recall0FP\mathrm{Recall}_{\mathrm{0FP}}). For ground based data our best method achieved an AUC score of 0.9770.977 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.500.50. For space-based data our best method achieved an AUC score of 0.9400.940 and a Recall0FP\mathrm{Recall}_{\mathrm{0FP}} of 0.320.32. On space-based data adding dihedral invariance to the CNN architecture diminished the overall score but achieved a higher no contamination recall. We found that using committees of 5 CNNs produce the best recall at zero contamination and consistenly score better AUC than a single CNN. We found that for every variation of our CNN lensfinder, we achieve AUC scores close to 11 within 6%6\%.Comment: 9 pages, accepted to A&

    Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?

    Get PDF
    We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the earlier developed and recently refined parton-cascade/cluster-hadronization model and its Monte Carlo implementation. This space-time model involves the dynamical interplay of perturbative QCD parton production and evolution, with non-perturbative parton-cluster formation and hadron production through cluster decays. Using computer simulations, we are able to follow the entwined time-evolution of parton and hadron degrees of freedom in both position and momentum space, from the instant of nuclear overlap to the final yield of particles. We present and discuss results for the multiplicity distributions, which agree well with the measured data from the CERN SPS, including those for K mesons. The transverse momentum distributions of the produced hadrons are also found to be in good agreement with the preliminary data measured by the NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN SPS. The analysis of the time evolution of transverse energy deposited in the collision zone and the energy density suggests an existence of partonic matter for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure

    Isoscalar-isovector mass splittings in excited mesons

    Full text link
    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.Comment: 8 RevTeX pages, including 1 LaTeX figure. CMU-HEP93-23/DOE-ER-40682-4

    Heavy resonance production in high energy nuclear collisions

    Get PDF
    We estimate freezeout conditions for ss, cc, and bb quarks in high energy nuclear collisions. Freezeout is due either to loss of thermal contact, or to particles ``wandering'' out of the region of hot matter. We then develop a thermal recombination model in which both single-particle (quark and antiquark) and two-particle (quark-antiquark) densities are conserved. Conservation of two-particle densities is necessary because quarks and antiquarks are always produced in coincidence, so that the local two-particle density can be much larger than the product of the single-particle densities. We use the freezeout conditions and recombination model to discuss heavy resonance production at zero baryon density in high energy nuclear collisions.Comment: revtex, 15 pages, no figures, KSUCNR-009-9

    Constrained neural network training and its application to hyperelastic material modeling

    Get PDF
    Neural networks (NN) have been studied and used widely in the field of computational mechanics, especially to approximate material behavior. One of their disadvantages is the large amount of data needed for the training process. In this paper, a new approach to enhance NN training with physical knowledge using constraint optimization techniques is presented. Specific constraints for hyperelastic materials are introduced, which include energy conservation, normalization and material symmetries. We show, that the introduced enhancements lead to better learning behavior with respect to well known issues like a small number of training samples or noisy data. The NN is used as a material law within a finite element analysis and its convergence behavior is discussed with regard to the newly introduced training enhancements. The feasibility of NNs trained with physical constraints is shown for data based on real world experiments. We show, that the enhanced training outperforms state-of-the-art techniques with respect to stability and convergence behavior within FE simulations

    On the bootstrap current in stellarators and tokamaks

    Get PDF
    corecore