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Abstract
Equilibrium magnetic configurations of W7-X stellarator plasma were analysed in this study.

The statistical method of Function Parametrization was used to recover the physical properties

of the magnetic configurations, such as the flux surface geometry, the magnetic field, the iota

profile , etc, from simulated experimental data. The study was carried out with a net toroidal

current. Idealized “measurements” were first used to recover the configuration. These “mea-

surements” were then perturbed with noise and the effect of this perturbation on the recovered

configuration parameters was estimated. The noise was scanned over a range large enough to

encompass that expected in the actual experiment. In the process, it was possible to ascertain

the limit of tolerable noise that can be allowed in the inputsso as not to significantly perturb the

outputs recovered with noiseless “measurements”. Generally, a cubic polynomial model was

found to be necessary for noise levels below 10%. For higher noise levels, a quadratic poly-

nomial performed as well as the cubic. The noise level of 10% was also the approximate limit

up to which the recovery with ideal measurements was generally reproduced. For the flux ge-

ometry recovery, however, the quadratic model performed similar to the cubic for any value of

noise, with the latter model proving to be significantly better only for the noiseless case. Also,

with noisy predictors the recovery error for the flux surfaces increases linearly with effective

radius from the plasma core up to the edge.
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1. Introduction

W7-X [1,2] is a fully optimized stellarator of the Helias type, with a five-fold toroidal sym-

metry (i.e., five toroidal periods), under construction at the Max-Planck Institut für Plasma-

physik (IPP), Greifswald, Germany. It has an average major radius of 5.5 m and an average

minor radius of 55 cm, giving an aspect ratio of about 10. A setof 2×5 modular field coils

(MFC) in each period produces the standard configuration with a rotational transformι-b = 1 at

the boundary with five surrounding natural islands forming aseparatrix. The value ofι-b can be

varied between 5/6 (low iota case) and 5/4 (high iota case) using 2×2 additional planar coils

(PLC) per period.There are a total of 10 control coils (two coils per period) which, however, do

not have any role in the generation of the magnetic configuration and are basically for control-

ling the magnetic islands at the boundary.The helical magnetic axis is pentagon-shaped when

viewed from the top. The plasma has a bean-shaped cross section at the corners of the pentagon

where the magnetic field is the strongest to allow for the trapping of fast particles within the

straight portions. Within a half-period, the plasma cross section varies from a bean-shape (φ =

0 degree), through a tear-drop shape (φ = 18 degrees) to a triangular shape (φ = 36 degrees).

An important goal of W7-X is to investigate the steady state capabilities of fusion devices.

For stellarators this essentially implies a real time monitoring of the discharges which have long

pulse lengths, of the order of minutes. For a real time study one must have means to generate a

magnetic configuration in some fraction of a second, while 3-D magnetohydrodynamic (MHD)

equilibrium codes, which simulate stellarator configurations, do so inminutes tohours depend-

ing on the resolution and available computational resources. This essentially requires the use of

methods which are fast and accurate.

For W7-X we have planned a sequence of in-depth analyses of the magnetic configura-

tions which, ultimately, will lead to a proper understanding of plasma equilibrium, stability and

transport. The first step in that sequence involved a study ofthe W7-X vacuum configurations

with magnetic islands [3] where we used the statistical, inverse mapping method of Function

Parametrization (FP) [4 - 6] to recover the physical properties of the configurations. Due to its

speed, this method is useful in a real time monitoring, control and data analysis where existence

of MHD equilibrium is not necessary. Our experience in [3], where an Artificial Neural Net-

work technique did not improve upon the results of a cubic polynomial FP model, encouraged

us to use FP again.

This paper reports the results on the next step of analysis – the scenario at finiteβ – where

there is a full MHD equilibrium. Magnetic configurations in presence of plasma pressure are

important because of significant changes to the vacuum flux surface topology at finite beta.

With partial optimization, meaning a reduction of plasma Pfirsch-Schlüter currents compared

to a classical stellarator, the previous stellarator in operation at IPP, W7-AS [7], was able to

achieve a volume-averaged beta (<β>) value of up to 3.4% with a magnetic field of 1 Tesla.

W7-X is fully optimized in the sense that the plasma influenceon the magnetic configuration

has been strongly reduced by the minimization of bootstrap currents (except for low-mirror

configurations) and Pfirsch-Schlüter currents. This provides good MHD stability properties up
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to <β>= 5%. However, in spite of the optimization, the bootstrap current does not vanish

completely. Up to±50kA of residual current is expected, depending on the configuration and

the plasma parameters, with a strong influence on the island divertor performance determined

by the location of the separatrix formed from the boundary islands. Electron Cyclotron Current

Drive (ECCD) and Neutral Beam Current Drive (NBCD) are, therefore, envisaged to control

the total plasma currentIp for proper divertor operation. Additionally, to show the reactor

capabilities of stellarators quasi-isodynamicity evolving at finite-beta provides good fast particle

confinement with increasing beta [2].

For the present study we neglected the presence of magnetic islands in the equilibrium

configurations. Islands in finiteβ conditions can be simulated only by codes like HINT [8] or

PIES [9]. However, these codes are computationally very demanding due to the complexity of

the calculations they have to perform, so the possibility ofusing them to generate large databases

for statistical analyses is still very bleak. Furthermore,the external coils of W7-X were assumed

to be accurately positioned, and error fields arising from, e.g., coil misalignments, were not

included in our statistical model.

The paper is outlined as follows. Section 2 describes the database generation with the equi-

librium code. Section 3 informs the reader of the decision onthe choice of the actual inputs

for our statistical model. Section 4 discusses the statistical approach used in the work. Section

5 describes the scheme of adding measurement noise, while Section 6 shows the results in all

their detail. The seventh and final section summarizes the paper.

2. Details of database generation

Simulated W7-X plasmas were produced by VMEC2000, a 3-D equilibrium code [10] that

assumes nested flux surfaces, thereby neglecting magnetic islands as mentioned in the previous

section. The geometry and the magnetic field on the flux surfaces are given as Fourier coeffi-

cients (FC’s) with a modest number of harmonics. A database of about 8000 such configurations

was generated for the statistical analysis.

The parameters which were varied randomly and independently consist of the six exter-

nal coil current ratiosi2, . . . , i5, iA, iB (formed by normalizing the absolute currentsI1, . . . , I5

(Modular field coils, MFCs),IA andIB (Planar field coils, PFCs) toI1), the parameters of the

profiles (as functions of normalised toroidal fluxs) of plasma pressure and the toroidal plasma

current (four parameters for each profile), and finally the plasma size (represented by the effec-

tive minor radius of the boundary surface,aeff ) which is required to vary the plasma volume.

This resulted in a total ofNm = 15 parameters, thereby yielding a higher dimensional parame-

ter space for database generation than that used for a similar investigation [11] for the W7-AS

stellarator where a vanishing toroidal current profile was assumed.

As in [11] we aim at a global FP over the entire parameter rangeof the 15 parameters.

Therefore we use the strategy of randomly varying the parameters to build up the database for

the regression which has the advantage that a database ofN cases hasN distinct values for
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every parameter varied. This is far more efficient than generating cases on a regularly spaced

grid where, for a cubic polynomial model, the absolute minimum number of cases, namely,

involving four gridpoints for each of the 15 input parameters, would be an impractically large

415 ≃ 109.

The plasma parameters
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Figure 1: A sample of plasma pressure profiles from the database.

were varied to allow a good

FP for their expected val-

ues in W7-X: volume-averaged

<β> of up to 5% and a

net toroidal current of up

to±50 kA for a mean field

strength of about 2 Tesla

throughout the database. In

addition, the same param-

eter space was retained for

the coil current ratios as was

used in [3], namely,i2, . . . , i5
in the range [0.6,1.2] and

iA, iB lying within [-1,1].

The profiles of pressure

and plasma current were chosen as a sequence of polynomials in the forms

p(s) =
n∑

i=1

aibi(s) (1)

I(s) =
n∑

i=1

cidi(s), (2)

respectively, wherebi(s) anddi(s) are polynomials of degreei in the normalized toroidal flux

s. We chosen=4 in both cases. These polynomials are given by

b1(s) = 1 − s d1(s) = s

b2(s) = (1 − 4s + 3s2) d2(s) = s(1 − s)

b3(s) = s(1 − s)(1 − 2s) d3(s) = s(1 − s)(1 − 2s)

b4(s) = s(1 − s)(1 − 5s + 5s2) d4(s) = s(1 − s)(1 − 5s + 5s2)

with
∫ 1
0 b1(s)ds=0.5 and

∫ 1
0 bi(s)ds=0 for i ≥ 2.

Only the first polynomialb1(s) contributes to
∫

p(s)ds, thus relatinga1 to the volume-

averaged pressure, whileb2(s) allows for pressure peaking variation which is inferred from

a1 anda2. For the current profile,d1(s)=s is the only term contributing at the plasma edge,

hencec1 equals the total plasma currentI(s = 1). The higher order polynomials were con-

structed so as not to alter the physics contributions of the lower orders. Figure 1 shows some of

the typical pressure profiles used in the analysis. Control of the bootstrap current by ECCD or

NBCD leads to quite different toroidal current profiles as shown in Fig. 2.

The criteria for deciding upon the usable cases for analysiswere:
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(a) Convergence of the code;

(b) Monotonically decreas-
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Figure 2: A sample of toroidal plasma current profiles from the
database.

ing pressure profiles, i.e.,dp/ds<0.

(c) ι-0 ≥ 0.16;

Too small values ofι-0 re-

sult in large Shafranov shift

of the magnetic axis if there

is a strong pressure gradient

in the low-iota region, so we

impose a lower limit.

(d) 0.62≤ ι-b ≤ 1.32;

This places a constraint

on the toroidal plasma cur-

rent, as too large currents may

deteriorate the flux surfaces

at the boundary.

(e) Restrictingβ0 ≤ 12%

(β0 is the plasmaβ on the

magnetic axis);

This constraint restricts the peaking of the pressure profile for large<β>-values. The prac-

tical reason for this is to get converged VMEC-equilibria within a reasonable computational

effort. Without this constraint, we would calculate equilibria with β0 up to30%. The physical

reasoning is that the experimental scenarios for high-<β> are expected to be at low magnetic

field strengths (B = 0.8-1.3 Tesla) with Neutral Beam Injection (NBI)-heatingleading to broad

pressure profiles. For W7-AS the peaking factor in such discharges was∼2. In contrast, Elec-

tron Cyclotron Resonance (ECR)-heated plasmas (140GHz, X2-mode), which may show very

peaked temperature profiles resulting in peaked pressure profiles, correspond to magnetic fields

of 2.5 Tesla where lower<β>-values are predicted because of the peaking and the additional

constraint due to the cutoff-density.

(f) aeff ≤ 60 cm, as it is unlikely to exceed 55 cm in experiments.

Figure 3 shows the configuration space in theiA-iB plane. The void at the lowerleft corner

is caused by restrictions (d) corresponding to the high-ι- region. In view of the positive shear of

theι- profiles for largerreff , restriction (f) also plays some role.The points in the rest of the

space are more or less uniform.

The basic plasma parameters chosen for the recovery were theprofiles (as functions of an

effective flux surface radiusreff ) of ι- and the FC’s of the magnetic field strength (Bmn), the

geometry (Rmn,Zmn) and the periodic renormalization function (λmn), wherem and n are,

respectively, the poloidal and the toroidal Fourier mode number. The quantityreff for each

flux surface is defined as the minor radius of a torus with circular cross section, having the

same major radius and the same volume. The parameterλ facilitates rapid convergence of the

Fourier series of the flux surface geometry and also modifies the poloidal angular coordinate
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(θ∗ = θ + λ) in order that the field lines are straight in the (θ∗ − φ) coordinate system [12].

In figure 4 we have plotted
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Figure 3: The configuration space for the planar coil current
ratiosiA andiB. The void (lower left corner) is causedmainly
by restriction (d) corresponding to high-ι- operation.

a few typical profiles ofι- from

the database, for differentcon-

figurations with different pres-

sure and toroidal current pro-

files showing the resulting va-

riety which is mainly due to the

toroidal current profile variation.

This prime dependency is shown

again in section 6(b) and figure

14.

3. Choice of predictors for
FP model

In our (simulated) experi-

ment with non-magnetic “measurements”, we assumed knowledge of the external coil currents,

the plasma size parameteraeff , and the profiles of plasma pressure and the toroidal plasma

current. Once a database containing these “measurements” was generated, it was necessary to

decide upon the predictors, or inputs, we would be using for the statistical FP model for equilib-

rium reconstruction. For the coil currents, the chosen inputs were the current ratios, as already

described in Section 2. The plasma sizeaeff formed an input itself. For the plasma pressure and

toroidal current data, the independently- generated coefficientsa1 - a4 andc1 - c4 in equations

(1) and (2), respectively, were possible candidates to be the model inputs, and were actually

used as predictors in an earlier analysis [13].

However, the actual set of predictors decided for the statistical model in this study did not

explicitly contain the coefficientsa1 - a4 and c1 - c4. Their inclusion involves the problem

of having to derive them from (noisy) experimental pressureand toroidal current profile data.

Since the coefficients of the higher order polynomials become increasingly sensitive to noise,

the quality of plasma parameter recovery rapidly worsens with increase of noise level. In fact,

in an exploratory analysis we found that the regression completely fails for noise levels≥ 20%

for all the output plasma parameters, with the exception of the m = 0 Fourier coefficients.

That is why we chose the more robust approach of a Principal Component Analysis (PCA)

of the profile data, and the significant principal components(PC’s), meaning those PC’s with

significant eigenvalues or variance, were the inputs to our model.

The actual PCA was carried out on the noiseless profile data, and the corresponding eigen-

vectors of the significant PC’s were stored. Later on, the noisy PC’s were calculated by a linear

combination of the stored (noiseless) eigenvectors with the noisy profile data. The advantages

of this method are the following:

(i) although the PC’s with decreasing eigenvalues also become increasingly noisy, they do
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not show the same strong sensitivity to noise when derived from noisy profile data;

(ii) a PCA of the profile data
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Figure 4: A sample of typical iota profiles from the database,
for different configurations. Observed variations in the iota
profiles are primarily due to the different current profiles.

can be carried out for any func-

tional form of the profile.

The PCA of the profile data

showed that the first four PC’s

accounted for the entire 100%

of the radial variation for both

the plasma pressure and the cur-

rent. This was the expected re-

sult, because the simulated pro-

file data were generated from

the parametrizations (1) and (2),

where the profile variablesp(s)

andI(s) vary linearly with the

coefficientsa1 - a4 andc1 - c4,

respectively.

4. Selection of the FP model

In this study we chose to recover the physical properties of the plasma magnetic config-

uration in the form of radial profiles of different parameters, so our statistical model should

incorporate this radial behaviour. In [11] the output profile parameters, such as the FC’s and the

rotational transform, were compactly parameterized as radial polynomials of the form

f(xj, reff) = p0 + p1reff + p2r
2
eff + . . . (3)

where each of the coefficientsp0, p1, etc, involved a quadratic combination of the inde-

pendent input parameters, or predictors,xj , j ranging from 1 toNm. Even in [3] where cu-

bic combinations of the inputs were found to be necessary, a model of the form of equation

(3) could still be used asNm (=6) was small. However, withNm=15 predictors used in the

present study, each of the above coefficients now contains(Nm+1)(Nm+2)
2

=136 quadratic, or
(Nm+1)(Nm+2)(Nm+3)

6
=816 cubic combinations. For the latter case, this involvesthe calculation

of thousands of coefficients in the model (3). Thus, the radial polynomial approach becomes

unrealistic for the present study.

Instead, the following method was used for the recovery of the plasma profile parameters.

A PCA of the profile parameters, valued atNrad = 21 radial points equidistant inreff , was

carried out. The 21 radial points were then replaced bynS (<< 21) significant PC variables

(SPCV)yℓ (ℓ = 1,. . . , nS), which may be interpreted as radial moments of the profile with the

weighting given bythe leadingnS eigenvectors.The eigenvectors are derived fromthe 21x21

covariance matrix of the raw profile parametersand play the role of radial eigenfunctions. which
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are determined by the leadingnS eigenvectors (playing the role of radial eigenfunctions) of the

21x21 covariance matrix of the raw profile parameters. Theseyℓ formed the response variables

for the regression. Eachyℓ was calculated from the projection of the 21-element radialvector

along theℓth principal component direction.

The model to recover thenS independent SPCV of the radial profile for each plasma param-

eter consisted of a “mixed” quadratic (q-FP )

yℓ =
Nm∑
i=0

i∑
j=0

pijxixj (4)

or “mixed” cubic (c-FP)

yℓ =
Nm∑
i=0

i∑
j=0

j∑
k=0

pijkxixjxk (5)

polynomials in the predictorsx. The number of model coefficients for scalar parameters,

for Nm = 15, were 136 for q-FP and 816 for c-FP, which is the same as thenumber of quadratic

and cubic combinations of theNm independent predictors as shown earlier. Thus, with about

5000 cases chosen for “training” there was a sufficient number of degrees of freedom in both

models for a reliable fitting.

The regression was then tested on a separate test dataset of about 2400 observations, drawn

randomly from the same 15-D configuration space as that used for training. The model co-

efficients, determined from the training dataset, were combined with the (quadratic or cubic)

combinations of the predictors in the test dataset to recover the radial SPCV of the plasma pro-

file variables in this dataset. The recovered SPCVy
(rec)
ℓ were then linearly combined with the

radial eigenvectors to get the recovered 21-element radialvectorf̄ rec for a plasma parameter:

f̄ rec =
nS∑
ℓ=1

y
(rec)
ℓ ēℓ (6)

where,̄eℓ is thelth eigenvector of the 21x21 covariance matrix. Finally the recovered plasma

parameters were compared with those stored in the test dataset to determine recovery statistics.

In Section 6 later, all the results shown are from the test dataset.

The training and the test parts were initially carried out with idealized predictors, i.e., pre-

dictors corresponding to ideal “measurements”. They were further repeated with various levels

of random noise in the “measurements”. The noise treatment is described in the next section.

5. Noise in “measurements”

Recovery of our magnetic configuration was first carried out with a regression model with

exact, or noiseless, predictors. However, in order to ensure a stable model, and also one that

is compatible with an actual experiment, it was decided to perturb the “measurements” with

noise, or measurement errors, of various levels which wouldencompass those expected in the

experiment. These errors were assumed to have a uniform distribution whose standard deviation
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was chosen as a percentage of the root-mean-square (rms) values of the “measurements” over

the database. Noise was self-consistently propagated intothe predictors of the model (discussed

in section 3) wherever they were derived from these “measurements”.

For the recovery of the parameters of the plasma magnetic configuration, the following noise

scheme was used to perturb the “measurements”. The relativeaccuracy of the coil current mea-

surement in W7-X has been estimated at 0.02% of 20 kA, that corresponds to a measurement

error of 4 amps [3]. This, by any standards, implies a very accurate measurement, given that

the coil currents will be typically of the order of tens of kiloAmps. With the rest of our “mea-

surements” likely to be very noisy in experiments, it shouldsuffice to leave the coil currents at

their exact values. Nevertheless, we chose to add a small error to the currents before they were

normalized to the current ratios. The error, quantified as 0.1% of the database rms values of the

currents, was 11 amps for the modular field coils and 7 amps forthe planar coils. This level of

noise in the coil currents was kept constant throughout the “experiment”.

For the toroidal cur-
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Figure 5: Variation of percentage noise inI(s) profile with normal-
ized toroidal fluxs, for 100% noise inJ(s) profile. red curve:without
edge correction; blue curve: with edge correction.

rent profileI(s), we took

account of the fact that,

with the exception of the

plasma current at the bound-

ary, it is the current den-

sity profile,J(s), which

is the known quantity (from

transport analysis, includ-

ing heat deposition pro-

files) with all its uncer-

tainties. SimulatedJ(s)

values were obtained by

finite differencing the database

I(s) profile. The noise

added toJ(s) was assumed

to bex% of the database

rms (flux-dependent) val-

ues ofJ(s). Thus, the

relative noise (x%) was uniform across the profile. The chosen values ofx consisted of a quasi-

continuous scan from 1 to 50. However, the absolute noise varied with the flux coordinates in

the same way as the database rms ofJ(s). The noisyJ̃(s) profile was summed to generate a

noisy Ĩ(s) profile. Clearly, there will be noise cancellation when summing J̃(s).

In the case of the edge value of the toroidal plasma current profile Ip = I(s = 1), an accurate

measurement will be available from a Rogowsky coil, the error level for which has already been

estimated. Thus, the noisỹI(s) input information is a combination of

9



Ĩj(sk) =
j∑

k=1

∆sJ̃(sk) (7)

(wherej ≤ 20) and the Rogowsky coil signalIp.

For W7-X the accuracy ofIp is expected to be better than 50 amps for a discharge lasting

for 30 minutes. With a maximum current of 50 kA chosen for thisstudy, this corresponds to

a random error of 0.1%. A further 0.5% systematic error on thechosen maximum value ofIp

may result due to a possible lack of homogeneity in the Rogowski coil winding. These errors

were added in sequence on the noiseless value ofI(s = 1). These errors are very small and, like

those on the coil currents, their level was held constant. With the noisyI(s) profile, including

the edge value, having thus been determined, it was then combined with the stored eigenvectors

to form four significant (noisy) PC’s forming the predictor set for I(s) as already explained in

section 2.

Figure 5 shows, as an example, the profile of the percentage noise in I(s) resulting from

100% noise inJ(s). The red curve shows the profile without the edge correction for I(s). As the

limit of the integration ofJ(s) increases, i.e., moving from the axis outwards, noise cancellation

leads to decreasing noise levels inI(s). However, there is some saturation within the outer 40%

of the profile. Nevertheless, the noise level does come down to ∼43% in the plasma edge

region. This gain is further enhanced by the independent andaccurate measurement of the edge

plasma current, as shown by the blue (dotted) curve. The localization of the edge correction is

obviously due to the fact that only the total plasma current,rather than the internal distribution,

is measured and its accuracies estimated.Figure 5 may be interpreted as follows. The drop in

theI(s = 1) error introduces a shielding current density close to and inside thes=1 surface, the

plasma boundary. This current density appropriately corrects the total plasma current and also

allows an uncorrelated variation of the inner current density by providing a shielding effect.

This picture gives an extreme case of the relative behaviourof the plasma current errors on the

boundary and inside.

For the pressure data a basically similar scheme was followed, the noise beingy% of the

(database flux dependent) mean value of the pressure. The relative noise was, once again,

uniform aty% along the profile. The absolute noise varied withs as the mean pressure did.

However, the chosen values ofy ranged from 0 only up to 20% as it is usually anticipated that

the plasma pressure is more accurately determined than the current density. The noise scan for

aeff was limited to 10% of the database mean value. The noise scan was done so that, when the

J(s) noise wasx%, noise on pressure data was(x/2.5)% and that onaeff was(x/5)%. In this

way several combinations of noise levels on these “measurements” can be worked with for the

recovery of the magnetic configuration and, hopefully, the noise range on each of them would

encompass those expected in the real experiment. Subsequently in this section and also in the

figures, we would quote theJ(s) noise only.

This correlation of the noise levels inJ(s), p(s) andaeff does not result in a loss of gener-

ality. Each triplet of noise levels is meant to show the quality of recovery when these measure-

ments are perturbed by the respective levels of noise.
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Figure 6 shows the distribution of the absolute noise valuesfor J(s) andp(s) over the profile

in s. The figure actually shows the values for 100% noise as an example. Since the noise was

calculated as a fixed percentage of the database (s-dependent) rms value ofJ(s) (which equals

the standard deviationσJ of J(s)) and mean value ofp(s), these curves also show the variation,

with s, of σJ (upper panel) and the mean value ofp(s) (lower panel). TheJ-curve shows

the large (and similar) variation of the plasma current density in the plasma core and the edge

regions, and the much smaller, virtually constant, variation in between.

6. Results
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of their database rms values.

a) Recovery of magnetic

configuration.

As reported in section

4, the recovered plasma pa-

rameters were obtained from

regressions using, as response

variables for the model, the

significantnS radial SPCV

of the profile variables. Ta-

ble 1 shows the values of

nS required to account for

(most of) the total variance

of the output profile vari-

ables. For the FC’s, how-

ever, there is a slight over-

estimation for the low-order

Fourier harmonics because

nS varies with the harmonics and increases with the poloidal mode numberm, even though this

increase was found to be very small for some parameters (e.g., λmn). The numbers quoted in the

table are essentially those for the higher harmonics. For example, a PCA ofR00 profile found

only 3 significant PC’s (accounting for over 99.9% of the variance in the original data); forR3,5

4 PC’s were needed, while 6 PC’s were required forR6,6. ForBmn, however, the corresponding

number of PC’s varied only from 4 forB00 to 5 forB6,6. Forλmn profile, we found that 6 PC’s

described 99.99% variance ofλ00, while λ6,6 needed 7 PC’s.
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Table 1: Values ofnS used for output profile parameters
Regressed parameter Value ofnS

ι- 4
Bmn 5
Rmn 6
Zmn 6
λmn 7

The significance of this number of PC’s in the FP model is that it estimates the order of

the radial polynomial modelling the profile variable, if that approach had been taken. Thus

B00(reff ) would have required at least a cubic polynomial inreff , while R6,6 would be poorly

recovered by a polynomial lower than 5th order. The FC’s forR, Z andλ , especially those with

the poloidal mode numberm > 2, have a more complex radial behaviour thanι- andBmn and,

as such, would need a polynomial of a higher order. Referringto the discussion in the beginning

of section 4, we have thus provided further evidence againstthe conventional radial polynomial

approach.

Figure 7 shows the error profiles forι--recovery using c-FP (solid lines) and q-FP (dashed

lines) or various values of measurement noise. The x-axis showsρeff , which is the normalized

reff , or
√

s. The c-FP recovery errors are significantly smaller for low levels of noise, but

from ∼20% noise onwards the two models show similar performance. The ordinate shows the

percentage spread (recovery) error defined as

E(mo)
pc = 100(E(mo)

rms /σ) (8)

for a modelmo ∈
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Figure 7: Profiles of recovery errors of iota regression for different
levels of measurement noise. Solid lines: c-FP ; Dashed lines: q-FP .

{c, q}, wherec denotes

the cubic-FP andq the

quadratic-FP model. The

quantityσ is the spread

in the data about the mean

value in the database, while

E(mo)
rms is the rms error

for the modelmo. In

the context of the out-

put profiles being regressed,

both σ andE(mo)
rms , and

thereforeE(mo)
pc , are func-

tions ofρeff .

The two sets of plots in figure 8 show the percentage error for the recovery of central- and

edge-ι- as a function of percentage measurement error, where the noise scan onJ(s) is quoted

along the abscissa. The set of curves plotted in dots are for the recovery of central-ι-. Once again

we find that for low levels of measurement noise c-FP (blue dots) is clearly the better model,

but its difference with q-FP (red dots) decreases as the noise increases. At 15%, the blue and

12



red dots coincide, before the q-FP curve goes below the c-FP curve. Thus, as in figure 7, the

initial superiority of c-FP weakened and finally reversed. However, even at the highest chosen

noise level, c-FP is only very slightly “worse” than q-FP.

The set of curves plot-
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Figure 8: Central- and edge-iota recovery error as a function of mea-
surement noise, with noise on J-profile quoted on abscissa.

ted in ‘+’ describe the

results for edge-ι- recov-

ery, with blue denoting

the c-FP model and red

the q-FP model. The blue

and the red curves meet

around the same value

of measurement noise as

the dotted curves. An-

other similarity between

the two sets of plots is

the significantly larger

central-ι- error compared

to the edge-ι- error for the entire noise scan, and also for noiseless predictors.

For noiseless predictors the larger central-ι- error implies two possible causes: (a) a larger

spread (about the mean) of central-ι- compared to edge-ι- values in the database, and (b) a larger

variation of central, compared to the edge, current density. By virtue of figure 6 possibility (b)

is ruled out, while (a) is true by database construction and we conclude that this is the cause of

the observation in discussion.

Table 2: Recovery statistics for leading orderRmn and Zmn

Parameter ρeff noise=0 noise=20% noise=50%
Ec

pc Eq
pc Ec

pc Eq
pc Ec

pc Eq
pc

0.0 2.99 6.82 7.60 9.16 14.74 14.98
R00 0.5 1.84 4.56 3.82 5.48 7.79 8.27

1.0 1.59 3.28 4.37 5.04 7.97 7.87
0.0 3.91 9.55 9.03 11.80 16.82 17.72

R01 0.5 3.39 7.02 10.16 11.21 18.91 18.29
1.0 4.05 6.49 26.72 25.48 49.77 45.83
0.0 5.29 9.83 7.39 10.92 12.21 14.22

R02 0.5 6.46 12.59 14.04 17.22 22.16 24.91
1.0 12.29 17.11 22.55 24.93 36.34 34.01
0.0 4.19 9.57 7.44 10.80 13.88 14.78

Z01 0.5 3.41 6.71 7.84 9.29 14.06 14.03
1.0 4.32 8.45 23.96 23.58 43.96 40.93

In presence of measurement noise the uncertainty in the edge-ι- value is basically determined

by that in the estimation of the total plasma currentIp and the minor radiusaeff of the plasma,

the noise in plasma pressure at the boundary being zero as thepressure itself is zero there. Since
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Ip is accurately measurable, estimation ofaeff remains the only source of uncertainty on which

the error in edge-ι- effectively depends. On the other hand, the estimation of central-ι- suffers

from errors in the central value ofJ(s) (andp(s), though its effect may not be pronounced for

ι--recovery). Furthermore, the gain achieved in the plasma edge in the form of reduction of noise

level in I(s) (as described in section 5 and figure 5) is absent in the central region. Thus, the

central-ι- is significantly more noisy than the edge-ι-.
To recover the flux
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Figure 9: Flux surface recovery in the bean-shaped plane forequilib-
rium case 6385 in the database. Quoted are percentage noise on J(s).
Blue: VMEC surfaces; Red: FP-recovered surfaces.

surface geometry, we

first regressed the FC’s

Rmn andZmn over the

entire profile.Table 2

shows the recovery statis-

tics (Ec
pc andEq

pc as de-

fined in eqn (8)) for the

leading orderRmn and

Zmn at three chosen points

along the profile – the

magnetic axis, the half-

way point and the plasma

boundary – for each of

the noise levels 0, 20%

and 50%.For R00 we

found that at zero noise,

the percentage spread

error decreases mono-

tonically from the axis to the edge, but at higher noise, it decreases from the axis up toρeff=0.7

or 0.75, before increasing again. Even at 20% measurement noise c-FP is clearly the better

model, though at 50% the two models are comparable. This is something that we also observed

for other low orderR0,n, n=1, 2 and 3.

ForZmn-recovery some general observations include the following:-

(a) The edge value of at least the low orderZ0,n are very sensitive to noise.

(b) Form>0, Zmn error decreases monotonically from the plasma core towardsthe edge.

This is due to fact that the values ofZmn, as well as their standard deviations, starting from zero

on the magnetic axis, are very small in the core region and monotonically increase towards the

plasma edge, so the percentage spread error in the core will tend to be large, and fall off towards

the edge.

Next, the FC’s were combined in a Fourier series of the forms

R(reff , u, v) =
M∑

m=0

N∑
n=−N

Rmn(reff) cos(2π(mu − nv)) (9)
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Z(reff , u, v) =
M∑

m=0

N∑
n=−N

Zmn(reff) sin(2π(mu − nv)) (10)

Hereu is a poloidal angular
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Figure 10: Flux surface recovery in the triangular plane
for equilibrium case 6385 in the database. Quoted are per-
centage noise onJ(s). Blue: VMEC surfaces; Red: FP-
recovered surfaces.

coordinate (0 ≤ u ≤ 1) andv

is a toroidal angular coordinate

(0 ≤ v ≤ Np). For W7-X,Np

= 5, the number of toroidal pe-

riods of field and geometry. We

also foundM = | N | = 6 suf-

ficient to construct the flux sur-

faces from the FC’s.

Figure 9 shows the bean-shaped

cross section of the W7-X flux

surfaces on thev=0 plane, for

one randomly chosen case in the

test dataset. The VMEC flux sur-

faces are shown in blue, while

the FP-recovered surfaces are in

red. The upper panel shows the

c-FP recovery, while the lower

one corresponds to q-FP. The re-

covered flux surfaces compare

well with the observed ones up

to 10% noise. A positive aspect

of the flux surface recovery is

the fitting of the indentation. Above

10% measurement noise, the re-

covered surfaces start deviating

from the observed surfaces. At

large noise levels q-FP reproduces

the points at maximum and min-

imum Z better than c-FP, but not the indentation which is fitted verywell by c-FP throughout

the noise scan.

Figure 10 shows the comparison of the VMEC flux surfaces with the FP-recovered surfaces

in the triangular plane forv=0.5, for the same observation as plotted in figure 9. The tip of

the triangular cross section on the outboard side shows a greater sensitivity to noise, as the

deviations start from there at≤10% noise, and this shows up more in the q-FP (compared to

c-FP) recovery at large noise levels. Even then, the flux surfaces on the inboard side are well

fitted by q-FP, while c-FP-recovered surfaces show a more or less uniform deviation on the in-

and outboard sides.

15



Table 3(a): Recovery statistics for the magnetic axis position

noise φ E
(c)
rms E

(q)
rms E

(c)
pc E

(q)
pc

% (degrees) (mm) (mm)
0 0 2.10 4.15 3.33 6.58

18 2.84 6.11 3.01 6.48
36 3.76 8.18 3.49 7.59

2 0 2.10 4.16 3.33 6.58
18 2.86 6.13 3.03 6.50
36 3.78 8.19 3.50 7.59

5 0 2.30 4.24 3.65 6.72
18 3.23 6.27 3.42 6.65
36 4.18 8.32 3.88 7.72

10 0 2.99 4.56 4.75 7.23
18 4.40 6.80 4.67 7.20
36 5.53 8.87 5.13 8.23

20 0 4.82 5.63 7.64 8.92
18 7.29 8.29 7.72 9.00
36 8.94 10.74 8.29 9.96

40 0 8.16 8.18 12.92 12.96
18 12.39 12.45 13.13 13.20
36 15.01 15.30 13.92 14.19

50 0 9.53 9.38 15.10 14.87
18 14.48 14.30 15.35 15.16
36 17.49 17.47 16.22 16.20

Table 3(b): Comparison ofRax and Zax recovery
noise φ rms error in percentage error in

Rax Zax Rax Zax

% (degrees) (mm) (mm)
0 0 2.10 – 3.33 –

6 2.31 0.12 3.22 6.52
12 2.62 0.22 3.07 7.70
18 2.82 0.29 2.99 11.61
24 3.15 0.29 3.12 13.45
30 3.56 0.20 3.36 12.37
36 3.76 – 3.49 –

50 0 9.53 – 15.10 –
6 10.57 0.32 14.74 17.28
12 12.63 0.49 14.75 17.04
18 14.47 0.53 15.34 21.20
24 15.91 0.47 15.76 21.91
30 17.05 0.30 16.09 18.68
36 17.49 – 16.22 –

The details of the recovery of the magnetic axis location forφ = 0,18 and 36 degrees and

different noise levels are listed in Table 3(a), where the toroidal angleφ is related tov in (9) and

(10) byφ = 2πv/Np. Here “magnetic axis position” implies its resultant position, i.e., resultant

of its R andZ components. We observe that up to 20% noise, c-FP remains thesignificantly

better model. At the highest noise level, the two models perform similarly.

Table 3(b) compares the recovery of the horizontal (Rax) and vertical component (Zax) of

the magnetic axis for the two extreme values of the chosen noise levels. We observe that the

percentage spread recovery errors of the radial component are smaller than those of the vertical

component even though the absolute errors ofZax are almost negligible.Note, in Table 3(b),

that theZ-statistics are not defined on the symmetry planes atφ=0 and 36, becauseZax = 0.0.

A quantitative estimate of the quality of flux surface recovery is tabulated in Table 4. The

recovery statistic is a root-mean-square (rms) deviation (δc
rms andδq

rms for c-FP and q-FP, re-

spectively) (in unit of length) of the recovered surface from the observed. This was calculated

for 20 flux surfaces along the profile. However, results for only the surfaces atρeff=0.05, 0.5

and 1.0, on theφ=0 plane, are shown in the table. The deviation of the recovered surface from

the observed is obtained by dividing the area of the non-overlapping region between the two

contours (as seen in a poloidal cross section) by the circumference. The rms deviation is over

all observations.

Table 4: Recovery statistics for flux surfaces on theφ=0 plane (bean-shaped cross section)
noise=0 noise=2% noise=5% noise=10% noise=20% noise=50%

ρeff δc
rms δq

rms δc
rms δq

rms δc
rms δq

rms δc
rms δq

rms δc
rms δq

rms δc
rms δq

rms

mm mm mm mm mm mm mm mm mm mm mm mm
0.05 0.04 0.05 0.11 0.11 0.26 0.24 0.49 0.48 0.92 0.89 1.75 1.64

0.50 0.18 0.26 1.07 1.01 2.59 2.43 4.94 4.76 9.17 8.90 17.43 16.31

1.00 0.31 0.41 2.09 1.96 5.08 4.79 9.74 9.39 18.11 17.58 34.44 32.25
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The results show the following:

a) Except for the
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Figure 11: Variation of the (rms value of the) locations, andtheir “error
bars”, of the magnetic axis and the flux surface centres on thesymme-
try planeφ = 0. Percentage values give the input noise. Blue curve:
Database rms value ofRc; Red curve:R(rms)

c ± δRc from c-FP recov-
ery; green curve:R(rms)

c ± δRc from q-FP recovery.

noiseless case, the rms

deviation increases lin-

early with radius from

the plasma core to the

edge.

b) Corresponding

to ρeff=0.05, 0.5 and

1.0, the database (un-

normalized)reff val-

ues have a spread (in

mm) of 2.47, 24.75 and

49.53, respectively, and

rms values (in mm) of

25.15, 251.54 and 503.13,

respectively; thus, on

the basis of a), the per-

centage error remains

constant over the pro-

file for any non-zero

noise level.

c) For the noise-

less case, the flux sur-

face atρeff=0.05 was recovered with an error of 1.6%, the one atρeff=0.5 had a recovery error

of 0.73%, while atρeff=1.0 the error was 0.63%, suggesting a progressively more accurate

recovery towards the plasma boundary.

d) For low noise levels, and up to 10%, the percentage error increases linearly with noise

level.

e) The c-FP and the q-FP models perform similarly (in fact, the latter performs slightly

better) at all (non-zero) noise levels; the former is significantly better only for the recovery with

noiseless predictors.

Some more insight for the geometrical accuracy of the FP can be gained by studying the

noise-behaviour of the recovery of the flux surface centresRc. For each flux surface along the

profile,Rc is defined as

Rc = 0.5[R(θ = 0) + R(θ = 180)] (11)

Figure 11 describes, for theφ=0 plane, the variation ofR(rms)
c with ρeff , whereR(rms)

c is the

database rms valueRc. The variation shows the extent of the relative shift of the flux surface

centres with respect to the magnetic axis, the location of which is the zero of the abscissa where

Rc(ρeff=0) = Rax.
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The profile ofR(rms)
c is plotted in blue in the figure. The figure also plotsR(rms)

c ± δR(rms)
c ,

whereδR(rms)
c is the absolute root-mean-square recovery error ofRc. The curves corresponding

to the c-FP model are in red and those for the q-FP model are plotted in green. The quantity

R(rms)
c ± δR(rms)

c is a kind of a confidence interval forR(rms)
c and gives an estimation of an

“error bar”, though the actual confidence interval will be described ifδR(rms)
c is replaced by at

least one standard deviation ofR(rms)
c .

Figure 11 shows that the

0 0.5 1

5.26

5.28

5.3

5.32

R
c(r

m
s)

 ±
 δ

R
c(r

m
s)

 (
m

)

0%

0 0.5 1

2%

0 0.5 1

5%

0 0.5 1

5.26

5.28

5.3

5.32

R
c(r

m
s)

 ±
 δ

R
c(r

m
s)

 (
m

)

10%

0 0.5 1

20%

0 0.5 1

50%

ρ
eff

Figure 12: Variation of the (rms value of the) locations, andtheir
“error bars”, of the magnetic axis and the flux surface centres on
the symmetry planeφ = 36. Percentage values give the input noise.
Blue curve: Database rms value ofRc; Red curve:R(rms)

c ± δRc

from c-FP recovery; green curve:R(rms)
c ± δRc from q-FP recov-

ery.

curves are basically indis-

tinguishable up to 20% noise

level, when the errors are

of the order of 1 mm. The

“error bar” widens at 20%,

particularly towards the plasma

edge. At 50% noise we

get a significant error range

throughout the profile, though

the error magnitude remains

larger in the edge region

(about 1.5 cm) than in the

core (about 0.6 cm). Note,

however, that the c-FP and

q-FP errors are virtually equal

at large noise levels, though

the former is significantly

less for low noise.

Figure 12 shows simi-

lar variations as figure 11,

but for theφ=36 plane. We

tried to improve the resolution of the curves by expanding the ordinate scale as much as pos-

sible. Given that (Radial extension atφ=0)/(Radial extension atφ=36)≤ 1/2 we find that the

errors on theφ=36 plane are generally smaller than the corresponding errors on theφ=0 plane.

For the recovery of the magnetic fieldB(reff , θ, φ) the same procedure as for the geometry

was followed. The magnetic field FC’sBmn(reff ) were first regressed and then summed accord-

ing to equation (9). During the summation statistical errors in the FC’s may either cancel out or

accumulate, so the errors in the reconstruction ofB(reff , θ, φ) can be quite different from those

in the individualBmn. Nevertheless, we quote some results from theBmn profile regression,

for the low order FC’s only, with the FP models. Table 5 shows the (c-FP and q-FP) percentage

recovery errors ofB00, B01, B02 andB11 for three positions along the profile — the magnetic

axis, the half-way point and the plasma boundary – for each chosen noise level 0, 20% and 50%.

Note thatB11 itself vanishes forρeff = 0 (as do allBmn’s, m > 0), so the percentage errors are

quoted forρeff = 0.05.
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Table 5: Recovery statistics for leading orderBmn

Parameter ρeff noise=0 noise=20% noise=50%
Ec

pc Eq
pc Ec

pc Eq
pc Ec

pc Eq
pc

0.0 1.37 1.61 3.37 4.86 6.94 9.11
B00 0.5 1.26 1.56 1.52 1.98 2.44 3.21

1.0 1.21 1.52 1.22 1.50 1.27 1.50
0.0 0.89 1.19 1.67 1.82 2.89 2.88

B01 0.5 0.80 0.86 1.18 1.26 1.71 1.69
1.0 0.83 0.75 2.01 1.92 3.40 3.12
0.0 0.85 1.26 0.90 1.40 1.35 1.68

B02 0.5 0.80 1.09 0.89 1.18 1.21 1.41
1.0 0.80 0.98 1.88 1.92 3.23 3.02
0.05 2.24 4.33 25.20 24.23 47.57 44.13

B11 0.5 1.69 3.14 24.53 23.50 46.31 42.96
1.0 1.63 2.90 19.26 18.39 36.24 33.57

From the table we find the following:-

ForB00

(a) the error decreases monotonically from axis towards theedge for all levels of noise, but

the decrease becomes increasingly sharper as the noise level is ramped up;

(b) the noise sensitivity also has a “profile”, in that it varies remarkably along the profile.

It is observed thatB00 is strongly sensitive to noise on the axis, and this sensitivity reduces

sharply along the profile so thatB00 is virtually insensitive to noise on the edge;

(c) the c-FP model produces significantly better results than q-FP throughout the noise scan,

even at high noise levels;

ForB01

(a) at 0% noise, the error decreases towards the edge, but forc-FP it just flattens after

ρeff=0.5; For q-FP, the flattening is not so pronounced;

(b) the two models are comparable at high noise values; for small noise also, they produce

similar errors except in the plasma core region where c-FP outperforms q-FP;

ForB11

(a) the error monotonically decreases towards the edge; this can again be explained by the

small values ofBmn around the magnetic axis, and a monotonic increase outwardsalong the

profile;

(b) sensitivity to noise is clearly seen.
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Table 6: Recovery statistics for|B| on axis
noise φ E(c)

rms E(q)
rms E(c)

pc E(q)
pc

% (degrees) (Tesla x10−3) (Tesla x10−3)
0 0 1.63 1.91 0.87 1.03

18 1.68 1.90 0.82 0.93
36 1.78 2.03 0.65 0.74

2 0 1.64 2.15 0.88 1.15
18 1.72 2.13 0.84 1.04
36 1.81 2.27 0.66 0.83

5 0 2.91 3.61 1.56 1.94
18 2.87 3.55 1.40 1.73
36 3.10 3.75 1.13 1.37

10 0 5.12 6.11 2.75 3.28
18 5.05 5.88 2.46 2.87
36 5.17 6.11 1.89 2.23

20 0 8.89 8.45 4.76 4.54
18 8.32 7.69 4.06 3.75
36 8.23 7.58 3.01 2.77

40 0 14.65 14.05 7.86 7.54
18 12.19 11.63 5.94 5.67
36 10.42 10.21 3.80 3.72

50 0 16.28 15.62 8.74 8.38
18 13.14 12.54 6.40 6.11
36 10.69 10.44 3.90 3.81

Table 6 shows the error statistics for mod-B on axis, forφ=0, 18 and 36 degrees, and the

noise sensitivity of these errors, for c-FP and q-FP models.The experimental significance of

this quantity lies in following facts:

a) The value ofB on axis atφ=0 is needed to know if the ECRH is on- or off-axis.

b) For Electron Cyclotron Current Drive (ECCD), which has been planned with the use of

movable mirrors, the wave will be moved out of theφ=0 plane to introduce the propagation

constantk|| parallel toB, so that the values ofB at otherφ-planes are also important.

The axis FC’sB0,n contribute to mod-B on axis, although the errors in the latter depend

on the nature of the correlation of errors in the former. Fromthe table we find that up to 10%

noise level c-FP is the better model, but a cross-over occursabove this level and at 20% noise

the q-FP errors are somewhat smaller.

Figure 13 shows the error variation of the mean magnetic field, averaged overθ, with ρeff

and measurement noise, forφ =0, 18 and 36 degree planes (blue, red and green curves in the

figure, respectively). The upper panel shows the results forc-FP-recovered field while the lower

panel is for q-FP-recovery.

Thisθ-averaged mean field is given by

< B > (reff , φ) =
1

2π

∫ 2π

0

∑
m

∑
n

Bmncos(mθ − nNpφ) dθ (12)

which integrates to
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< B > (reff , φ) =
∑
n

B0,n cos(nNpφ) (13)

Thus, only the
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Figure 13: Variation of percentage spread recovery error ofthe magnetic
field as a function of normalized effective radius as well as measurement
noise (given by the percentage numbers on the figures). Erroron axis have
not been plotted. Blue curve:φ=0; Red curve:φ=18; Green curve:φ=36.

m=0 terms survive

and the errors in

the leading order

B0,n determine those

in < B > (reff , φ).

The error profile

in figure 13 shows

the influence of

B00 as the dom-

inating Fourier com-

ponent only in cer-

tain parts of the

profile, namely, the

plasma core, the

middle (ρeff=0.5)

and the edge re-

gion. The oscil-

lating error pro-

file shows that in

other regions the higher orderB0,n also have a strong influence in the recovery ofθ-averaged

mean field. Note that the error on the axis itself is not shown in figure 13,these being tabulated

in table 6. Forφ =0 the error is most sensitive to noise, while atφ =36 it shows the least sen-

sitivity except at the plasma edge where both models show similar errors forφ = 0, 18 and 36

deg, and this similarity is observed for all the noise levelsconsidered. Comparing the two FP

models, our general conclusion is that the c-FP model is significantly better than q-FP at low

noise levels, while the two models show similar performanceat large noise.

Next we look at the recovery of the stream functionλ which relates to obtaining magnetic

coordinates and thus get the field line direction.

Table 7: Recovery statistics of leading orderλmn

Parameter ρeff noise=0 noise=20% noise=50%
Ec

pc Eq
pc Ec

pc Eq
pc Ec

pc Eq
pc

0.0 23.77 27.35 30.24 31.91 44.09 43.28
λ01 0.5 25.12 29.31 31.16 33.15 44.53 43.62

1.0 25.77 29.36 28.13 30.85 34.13 35.03
0.0 84.40 82.35 83.79 82.37 84.43 83.36

λ02 0.5 70.49 70.73 71.07 70.98 73.52 74.12
1.0 50.79 57.80 51.79 58.37 55.54 60.06
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Table 7 contains the recovery statistics of the profile of some leading order FC’sλmn, where

the percentage errors from c-FP and q-FP models are quoted atthree positions along the profile

– the magnetic axis, the plasma boundary and the half-way point. From the large errors (even

without measurement noise) it is clear that the recovery wasquite challenging.

However, this aspect of the recovery was to be expected to some extent, because for the FC’s

the recovery has a strong dependency on the spectral minimisation [10] used in the VMEC2000

code. When a Fourier decomposition is spectrally minimised, it means the high order Fourier

harmonics are penalized. Spectral minimisation leads to a unique determination of the poloidal

angular coordinate. In this context it should be pointed outthat whileRmn andZmn are spec-

trally minimised in VMEC2000,Bmn and λmn are not. The latter, therefore, have broader

spectra which may lead to larger recovery errors. However, only the recovery ofλmn was af-

fected by this problem. The reason possibly lies in the smallmagnitudes ofλmn, even those in

the leading order, so that FP had difficulties in recovering them accurately.

The FC’s were summed up over the Fourier modes according to equation (10) to obtain

λ(reff , θ, φ). If we now turn to Table 8, we find that the errors of estimationof λ on axis follow

those for the FC’s, i.e., they are also poorly recovered, even without noise. That is why only

the statistics for zero noise are shown. It should be noted thatλ(reff , θ, φ) ∼ 0 on the magnetic

axis forφ=0, 36.

Table 8: Recovery statistics of|λ| on axis
noise φ E(c)

rms E(q)
rms E(c)

pc E(q)
pc

% (degrees) (Radian x10−3) (Radian x10−3)
6 2.10 2.03 44.83 43.22

0 18 4.82 4.73 67.83 66.62
30 3.27 3.33 50.04 59.12

Figure 14 describes the error variation of meanλ, averaged overθ, with ρeff and measure-

ment noise. Theθ-averagedλ was calculated in the same way as the corresponding quantityfor

B shown in equations (12) and (13). As in Figure 13, the blue, red and green curves describe the

statistics onφ=0, 18 and 36 degrees, respectively, and the axis errors are not shown. The errors

in the plasma core are generally large, following the pattern on the magnetic axis. The point

worth noting here is the sharp decrease of the error outside the core region, typically forρeff ≥
0.2, where the errors are of the order of only a few percent of the spread. In fact, the decrease

becomes even sharper with increasing noise, because the edge error increases only very little

compared to the error in the core.

Thus, even though the individualλmn’s were poorly recovered by the FP models, the re-

constructedλ(reff , θ, φ) showed a good recovery accuracy throughout the profile except the

plasma core. This might suggest that the large errors in theλmn’s were strongly anti-correlated

and therefore (mostly) cancelled out. The results shown in figure 14 also show that the recovery

of the magnetic field line direction with the present method was a reasonable success, although

some more investigation may be necessary in view of the largeλmn errors.
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(b) Sensitivity test of some regressed output parameters.

In our analy-
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Figure 14: Variation of percentage spread recovery error ofλ as a function
of normalized effective radius as well as measurement noise(given by the
percentage numbers on the figures). Error on axis have not been plotted.
Blue curve:φ=0; Red curve:φ=18; Green curve:φ=36.

sis, the parame-

ters describing the

physical state of

the plasma mag-

netic configuration

were recovered from

simulated measure-

ments from which

the 15 predictors,

or inputs, to the

statistical model

were generated. It

would be interest-

ing to test the spe-

cific dependencies

of a few of the out-

put parameters re-

covered from the model on the different basic “measurements”. This was done by removing a

particular predictorSI from the full set, recovering an output parameterSO and comparing the

recovery errors with those obtained forSO with the full set of noiseless inputs, thereby getting

an idea of the influence the excluded inputSI has onSO.

Our basic “measurements” included the external coil currents,aeff , and the distributions of

plasma pressure and toroidal plasma current. These formed 6, 1, 4 and 4 predictors, respec-

tively. We chose to exclude a “measurement” by simply reducing the value of the concerned

predictor(s) to zero, keeping the predictors for the other “measurements” at their noiseless val-

ues. This gives a signal-to-noise ratio of zero for the predictor(s) removed, the percentage noise

being infinity, for the excluded measurement. It is to be noted here that this test is only for

the sensitivity of the output plasma parameters to the inputs, so the possible correlations of the

measurement noise is ignored here.

Figure 15 shows the effect of excluding, in turn, the coil currents,aeff , the plasma current

and pressure profile, on the rms error profile ofι-. As before,ρeff is the normalisedreff .

The figure also plots, for the sake of comparison, the error profile when the entire set of 15

inputs corresponded to ideal, or noiseless measurements (indicated as “All inputs ideal” in the

figures), and also when they were all simultaneously excluded from the input set (indicated as

“No inputs” in the figures). The latter case, corresponding to a signal-to-noise ratio of zero

simultaneously for all the measurements, just plots the profile of the standard deviation inι-,
meaning a 100% recovery error, and is obviously the worst scenario for the output errors.

The central-ι- error is the largest whenI(s) is removed, because the central-ι- value strongly
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depends on the central current density. The pressure profilehas a substantial effect on central-ι-,
though a very small effect on the boundary-ι-. Whenaeff was excluded,ι--profile was mod-

erately affected. The external coil currents also have a strong overall influence which, at the

boundary, is even stronger than theI(s) effect.

7. Conclusions
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Figure 15: Studying the influence of the “measurements” on the iota
profile recovery. Removal of one measurement means the rest are at
their exact values. For comparison with the extreme cases, the error
profile for all ideal inputs (magenta curve) and no inputs (black curve)
are also shown.

Equilibrium recon-

struction of W7-X mag-

netic configuration at

finite-β using essentially

non-magnetic measure-

ments showed excellent

recovery accuracy at low

levels of measurement

noise (added simulta-

neously to perturb all

predictors), usually up

to around 10% onJ(s),

using a cubic polyno-

mial model. This sup-

ported earlier results on

vacuum analysis. The

results obtained with ex-

act inputs would be very

useful inproviding fast

transformations for diagnostics,thereby avoiding the use of time-consuming equilibrium codes

, and may also serve to provide good starting configurations for a more rapid convergence of

the equilibrium codes if they are needed.

With increase of measurement noise levels the difference inperformance between the cubic

and the quadratic polynomials reduced. In the worst case scenario of the chosen noise limits,

that corresponded to 50% ofJ(s)-profile noise, 20% of pressure profile noise and 10% noise

in aeff , the two models performed similarly. The only exception wasthe recovery of the flux

geometry, where the two models produced errors of similar order for any (non-zero) value of

noise.

The recovery of the profiles ofλmn produced very large errors, as did the axis recovery ofλ.

However, the errors sharply reduced on the flux surfaces outside the plasma core to very small

values, to show an impressive reconstruction. The edge values were only mildly affected by

measurement errors.Even then, this recovery may need some more investigation inview of the

large errors in the individualλmn.

However, for all the similarities of its performance with the q-FP model at large noise levels,
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c-FP should still be the recommended model due to its overallreliability. In fact, some of the

results suggest that, by using an alternative method to the linear regression, namely, errors-in-

variables approach [14,15] which is meant exclusively for system identification in presence of

noise in predictors, c-FP is likely to perform significantlybetter even at high noise levels.

The entire analysis was considerably simplified by the use ofthe PC’s of the output profile

variables, rather than the conventional radial polynomialapproach. This was further demon-

strated in the number of significant PC’s the different profile variables corresponded to, espe-

cially for the Fourier coefficients.

In the second part of the analysis, recovery of the plasma magnetic configuration was stud-

ied again by excluding a subset of the predictors from the full set, leaving the rest at their

exact values. This is a test of the importance of the excludedpredictors, and therefore of the

corresponding “measurements”, for the recovery of different properties of the magnetic config-

uration. The test was carried out for the profiles of rotational transform as an example.

The plasma configurations in the database used in this analysis had only nested flux surfaces,

and magnetic islands were neglected. Thus, the plasmas werebasically limiter bound. To have

islands in the analysis, the database needs to be generated with codes such as HINT or PIES

which are still too time consuming with strong CPU requests to be used for generating thousands

of equilibria.

Essentially non-magnetic measurements were used for this analysis. In the near future, we

plan to report work where magnetic measurements, replacingthe profile data, would be used to

recover the finite-β configurations.
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