415 research outputs found

    High-Resolution Three-Dimensional NMR Structure Of The KRAS Proto-Oncogene Promoter Reveals Key Features Of A G-Quadruplex Involved In Transcriptional Regulation

    Get PDF
    Non-canonical base pairing within guanine-rich DNA and RNA sequences can produce G-quartets, whose stacking leads to the formation of a G-quadruplex (G4). G4s can coexist with canonical duplex DNA in the human genome and have been suggested to suppress gene transcription, and much attention has therefore focused on studying G4s in promotor regions of disease-related genes. For example, the human KRAS proto-oncogene contains a nuclease-hypersensitive element located upstream of the major transcription start site. The KRAS nuclease-hypersensitive element (NHE) region contains a G-rich element (22RT; 5′-AGGGCGGTGTGGGAATAGGGAA-3′) and encompasses a Myc-associated zinc finger-binding site that regulates KRAS transcription. The NEH region therefore has been proposed as a target for new drugs that control KRAS transcription, which requires detailed knowledge of the NHE structure. In this study, we report a high-resolution NMR structure of the G-rich element within the KRAS NHE. We found that the G-rich element forms a parallel structure with three G-quartets connected by a four-nucleotide loop and two short one-nucleotide double-chain reversal loops. In addition, a thymine bulge is found between G8 and G9. The loops of different lengths and the presence of a bulge between the G-quartets are structural elements that potentially can be targeted by small chemical ligands that would further stabilize the structure and interfere or block transcriptional regulators such as Myc-associated zinc finger from accessing their binding sites on the KRAS promoter. In conclusion, our work suggests a possible new route for the development of anticancer agents that could suppress KRAS expression

    Quadruplexes In ‘Dicty’: Crystal Structure Of A Four-Quartet G-Quadruplex Formed By G-Rich Motif Found In The Dictyostelium Discoideum Genome

    Get PDF
    Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249–1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson–Crick base pair and a A–T–A triad and displays high thermal stability (Tm \u3e 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools

    Interaction Of Human Telomeric DNA With N-Methyl Mesoporphyrin IX

    Get PDF
    The remarkable selectivity of N-methyl mesoporphyrin IX (NMM) for G-quadruplexes (GQs) is long known, however its ability to stabilize and bind GQs has not been investigated in detail. Through the use of circular dichroism, UV-visible spectroscopy and fluorescence resonance energy transfer (FRET) melting assay we have shown that NMM stabilizes human telomeric DNA dAG(3)(TTAG(3))(3) (Tel22) and is selective for its parallel conformation to which it binds in 1:1 stoichiometry with a binding constant of similar to 1.0 x 10(5) M-1. NMM does not interact with an antiparallel conformation of Tel22 in sodium buffer and is the second example in the literature, after TOxaPy, of a ligand with an excellent selectivity for a specific GQ structure. NMM\u27s stabilizing ability toward predominantly parallel GQ conformation is universal: it stabilizes a variety of biologically relevant G-rich sequences including telomeres and oncogene promoters. The N-methyl group is integral for selectivity and stabilization, as the unmethylated analogue, mesoporphyrin IX, does not stabilize GQ DNA in FRET melting assays. Finally, NMM induces the isomerization of Tel22 into a structure with increased parallel component in K+ but not in Na+ buffer. The ability of NMM to cause structural rearrangement and efficient stabilization of Tel22 may bear biological significance

    Thioflavin T As A Fluorescence Light-Up Probe For G4 Formation

    Get PDF
    Thioflavin T (ThT) becomes fluorescent in the presence of the G-quadruplex structure such as that formed by the human telomeric motif. In this report, we extend and generalize these observations and show that this dye may be used as a convenient and specific quadruplex probe. In the presence of most, but not all, G4-forming sequences, we observed a large increase in ThT fluorescence emission, whereas the presence of control duplexes and single strands had a more limited effect on emission. This differential behavior allowed us to design a high-throughput assay to detect G4 formation. Hundreds of different oligonucleotides may be tested in parallel for G4 formation with a simple fluorescence plate reader. We applied this technique to a family of aptamers not previously recognized as G4-forming sequences and demonstrated that ThT fluorescence signal may be used to predict G4 formation

    Investigation Of The Interactions Between Pt(II) And Pd(II) Derivatives Of 5,10,15,20-Tetrakis (N-Methyl-4-Pyridyl) Porphyrin And G-Quadruplex DNA

    Get PDF
    G-quadruplexes are non-canonical DNA structures formed by guanine-rich DNA sequences that are implicated in cancer and aging. Understanding how small molecule ligands interact with quadruplexes is essential both to the development of novel anticancer therapeutics and to the design of new quadruplex-selective probes needed for elucidation of quadruplex biological functions. In this work, UV–visible, fluorescence, and circular dichroism spectroscopies, fluorescence resonance energy transfer (FRET) melting assays, and resonance light scattering were used to investigate how the Pt(II) and Pd(II) derivatives of the well-studied 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) interact with quadruplexes formed by the human telomeric DNA, Tel22, and by the G-rich sequences from oncogene promoters. Our results suggest that Pt- and PdTMPyP4 interact with Tel22 via efficient π–π stacking with a binding affinity of 106–107 M−1. Under porphyrin excess, PtTMPyP4 aggregates using Tel22 as a template; the aggregates reach maximum size at [PtTMPyP4]/[Tel22] ~8 and dissolve at [PtTMPyP4]/[Tel22] ≤ 2. FRET assays reveal that both porphyrins are excellent stabilizers of human telomeric DNA, with stabilization temperature of 30.7 ± 0.6 °C for PtTMPyP4 and 30.9 ± 0.4 °C for PdTMPyP4 at [PtTMPyP4]/[Tel22] = 2 in K+ buffer, values significantly higher as compared to those for TMPyP4. The porphyrins display modest selectivity for quadruplex vs. duplex DNA, with selectivity ratios of 150 and 330 for Pt- and PdTMPyP4, respectively. This selectivity was confirmed by observed ‘light switch’ effect: fluorescence of PtTMPyP4 increases significantly in the presence of a variety of DNA secondary structures, yet the strongest effect is produced by quadruplex DNA

    Rudimentary G-Quadruplex-Based Telomere Capping In Saccharomyces Cerevisiae

    Get PDF
    Telomere capping conceals chromosome ends from exonucleases and checkpoints, but the full range of capping mechanisms is not well defined. Telomeres have the potential to form G-quadruplex (G4) DNA, although evidence for telomere G4 DNA function in vivo is limited. In budding yeast, capping requires the Cdc13 protein and is lost at nonpermissive temperatures in cdc13-1 mutants. Here, we use several independent G4 DNA-stabilizing treatments to suppress cdc13-1 capping defects. These include overexpression of three different G4 DNA binding proteins, loss of the G4 DNA unwinding helicase Sgs1, or treatment with small molecule G4 DNA ligands. In vitro, we show that protein-bound G4 DNA at a 3\u27 overhang inhibits 5\u27-\u3e 3\u27 resection of a paired strand by exonuclease I. These findings demonstrate that, at least in the absence of full natural capping, G4 DNA can play a positive role at telomeres in vivo

    Chikungunya virus-induced autophagy delays caspase-dependent cell death

    Get PDF
    Autophagy is an important survival pathway and can participate in the host response to infection. Studying Chikungunya virus (CHIKV), the causative agent of a major epidemic in India, Southeast Asia, and southern Europe, we reveal a novel mechanism by which autophagy limits cell death and mortality after infection. We use biochemical studies and single cell multispectral assays to demonstrate that direct infection triggers both apoptosis and autophagy. CHIKV-induced autophagy is mediated by the independent induction of endoplasmic reticulum and oxidative stress pathways. These cellular responses delay apoptotic cell death by inducing the IRE1α–XBP-1 pathway in conjunction with ROS-mediated mTOR inhibition. Silencing of autophagy genes resulted in enhanced intrinsic and extrinsic apoptosis, favoring viral propagation in cultured cells. Providing in vivo evidence for the relevance of our findings, Atg16L(HM) mice, which display reduced levels of autophagy, exhibited increased lethality and showed a higher sensitivity to CHIKV-induced apoptosis. Based on kinetic studies and the observation that features of apoptosis and autophagy were mutually exclusive, we conclude that autophagy inhibits caspase-dependent cell death but is ultimately overwhelmed by viral replication. Our study suggests that inducers of autophagy may limit the pathogenesis of acute Chikungunya disease

    Small-molecule-induced DNA damage identifies alternative DNA structures in human genes.

    Get PDF
    Guanine-rich DNA sequences that can adopt non-Watson-Crick structures in vitro are prevalent in the human genome. Whether such structures normally exist in mammalian cells has, however, been the subject of active research for decades. Here we show that the G-quadruplex-interacting drug pyridostatin promotes growth arrest in human cancer cells by inducing replication- and transcription-dependent DNA damage. A chromatin immunoprecipitation sequencing analysis of the DNA damage marker γH2AX provided the genome-wide distribution of pyridostatin-induced sites of damage and revealed that pyridostatin targets gene bodies containing clusters of sequences with a propensity for G-quadruplex formation. As a result, pyridostatin modulated the expression of these genes, including the proto-oncogene SRC. We observed that pyridostatin reduced SRC protein abundance and SRC-dependent cellular motility in human breast cancer cells, validating SRC as a target of this drug. Our unbiased approach to define genomic sites of action for a drug establishes a framework for discovering functional DNA-drug interactions

    Protocol for a national audit on self-reported confidence levels, training requirements and current practice among trainee doctors in the UK: The Trainees Own Perception of Delivery of Care in Diabetes (TOPDOC) Study

    Get PDF
    Background: As the incidence and prevalence of diabetes increases across the world, resource pressures require doctors without specialist training to provide care for people with diabetes. In the UK, national standards have been set to ensure quality diabetes care from diagnosis to the management of complications. In a multi-centre pilot study, we have demonstrated a lack of confidence among UK trainee doctors in managing diabetes. Suboptimal confidence was identified in a number of areas, including the management of diabetes emergencies. A national survey would clarify whether the results of our pilot study are representative and reproducible. Methods/Design: Target cohort: All postgraduate trainee doctors in the UK. Domains Studied: The self reported online survey questionnaire has 5 domains: (1) confidence levels in the diagnosis and management of diabetes, (2) working with diabetes specialists, (3) perceived adequacy of training in diabetes (4) current practice in optimising glycaemic control and (5) perceived barriers to seeking euglycaemia. Assessment tools: Self-reported confidence is assessed using the 'Confidence Rating' (CR) scale for trainee doctors developed by the Royal College of Physicians. This scale has four points - ('not confident' (CR1), 'satisfactory but lacking confidence' (CR2), 'confident in some cases (CR3) and 'fully confident in most cases' (CR4). Frequency of aspects of day-to-day practice is assessed using a six-point scale. Respondents have a choice of 'always' (100%), 'almost always' (80-99%), 'often' (50-79%), 'not very often' (20-49%) and 'rarely' (5-19%) or never (less than 5%). Discussion: It is anticipated that the results of this national study will clarify confidence levels and current practice among trainee doctors in the provision of care for people with diabetes. The responses will inform efforts to enhance postgraduate training in diabetes, potentially improving the quality of care for people with diabetes.</p

    TBK1 Kinase Addiction in Lung Cancer Cells Is Mediated via Autophagy of Tax1bp1/Ndp52 and Non-Canonical NF-kappa B Signalling

    Get PDF
    K-Ras dependent non-small cell lung cancer (NSCLC) cells are 'addicted' to basal autophagy that reprograms cellular metabolism in a lysosomal-sensitive manner. Here we demonstrate that the xenophagy-associated kinase TBK1 drives basal autophagy, consistent with its known requirement in K-Ras-dependent NSCLC proliferation. Furthermore, basal autophagy in this context is characterised by sequestration of the xenophagy cargo receptor Ndp52 and its paralogue Tax1bp1, which we demonstrate here to be a bona fide cargo receptor. Autophagy of these cargo receptors promotes non-canonical NF-κB signalling. We propose that this TBK1-dependent mechanism for NF-κB signalling contributes to autophagy addiction in K-Ras driven NSCLC
    corecore